We consider the problem

$$
\left.\Delta u=\lambda(u-\phi)_{+}^{(} p-1\right), x \in \Omega, u=0 \quad \text { on the boundary of } \Omega,
$$

where Ω is a bounded domain in R^{N} and ϕ is a positive harmonic function in Ω.

This problem is related to steady vortex pairs in an ideal fluid.
Under the assumption that ϕ has k strictly local minimum points z_{1}, \ldots, z_{k} on the boundary of Ω, we are able to prove the existence of a solution pair $\left(u_{\lambda}, A_{\lambda}\right)$ such that the "vortex core" A_{λ} (i.e. where $u_{\lambda}>\phi$) has exactly k components which shrink to the points z_{1}, \ldots, z_{k}, as $\lambda->+\infty$. Moreover these vertex cores are approximately balls.

