We consider the problem

 $\Delta u = \lambda (u - \phi)_+^{(p-1)}, x \in \Omega, u = 0 \quad \text{on the boundary of} \quad \Omega,$

where Ω is a bounded domain in R^N and ϕ is a positive harmonic function in $\Omega.$

This problem is related to steady vortex pairs in an ideal fluid.

Under the assumption that ϕ has k strictly local minimum points $z_1, ..., z_k$ on the boundary of Ω , we are able to prove the existence of a solution pair $(u_{\lambda}, A_{\lambda})$ such that the "vortex core" A_{λ} (i.e. where $u_{\lambda} > \phi$) has exactly k components which shrink to the points $z_1, ..., z_k$, as $\lambda - > +\infty$. Moreover these vertex cores are approximately balls.