We investigate the regularity of the weak solutions for degenerate elliptic equations of the following kind

$$
\begin{equation*}
\operatorname{div} A(x, u(x), \nabla u(x))+B(x, u(x), \nabla u(x))=0, \tag{1}
\end{equation*}
$$

under the structure conditions

$$
\left\{\begin{array}{l}
|A(x, u, \xi)| \leq a \omega(x)|\xi|^{p-1}+b|u|^{p-1}+e \tag{2}\\
|B(x, u, \xi)| \leq c|\xi|^{p-1}+d|u|^{p-1}+f \\
\xi \cdot A(x, u, \xi) \geq \omega(x)|\xi|^{p}-d|u|^{p}-g .
\end{array}\right.
$$

Such equations have been studied by many Authors in the case $\omega(x) \equiv 1$ or ω an A_{2} Muckenhoupt weight. Here v is a strong A_{∞} weight and $\omega=v^{1-\frac{p}{n}}$, $1<p<n$.

The novelty here is the degeneracy condition given by choice of the weight ω to be a power of a strong A_{∞} weight. Moreover, we assume very mild integrability conditions on the lower order terms. These conditions are sharp and - at least in some instances - are necessary and sufficient.

Our main result is the Harnack inequality for nonnegative weak solutions. As a direct consequence, smoothness for weak solutions is obtained. In particular, we have continuity result under Stummel - Kato type assumptions and hölder continuity result under Morrey type assumptions.

