Higher differentiability and regularity for minimizers of convex multiple integrals

M. Carozza

March 5, 2010

We consider multiple integrals with convex integrand satisfying (p,q) growth conditions. Namely we deal with functionals of the form

$$\mathcal{I}(v,\Omega) = \int_{\Omega} F(Dv(x)) \,\mathrm{d}x$$

where Ω is an open subset of \mathbb{R}^n and $v: \Omega \to \mathbb{R}^N$ is a suitable map. Here we are concerned with the multi-dimensional cases $n, N \ge 2$ and with integrands $F: \mathbb{R}^{N \times n} \to \mathbb{R}$ satisfying, for exponents $q \ge p \ge 2$ and positive constants L, c, the following hypotheses:

$$0 \le F(\xi) \le L(1+|\xi|^q)$$
 (H1)

and

$$\langle D^2 F(\xi)\eta,\eta\rangle \ge c(1+|\xi|^2)^{\frac{p-2}{2}}|\eta|^2$$
 (H2)

for all $\xi, \eta \in \mathbb{R}^{N \times n}$.

We prove higher differentiability results for bounded local minimizers of the functional \mathcal{I} , and for not a priori bounded local minimizers in the case $p \ge n - 2$, under dimensionless conditions on the gap between the growth and coercivity exponents.