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Motivation

The (classical) Minkowski problem

Let µ be a finite Borel measure on Sn−1. Find the necessary and
sufficient conditions so that µ is the surface area measure of a convex
body K .
To what extent is the solution unique?
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Motivation

The (classical) Minkowski problem

Let µ be a finite Borel measure on Sn−1. Find the necessary and
sufficient conditions so that µ is the surface area measure of a convex
body K .
To what extent is the solution unique?

SK (ω) = Hn−1(ν−1
K (ω))
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Motivation

Solve
µ(·) = SK (·).

When K is C2,+,

SK (v) =
1

Hn−1(K , v)
dv .

When µ = fdv , Monge-Ampère equation

det(hij + hδij) = f .

Minkowski, Aleksandrov, Fenchel, Jessen, Cheng, Yau, Pogorelov,
Caffarelli,...
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Motivation

Why study surface area measure?

Aleksandrov’s variational formula

d
dt

!!!!
t=0

V (K + tL) =
"

Sn−1
hL(v)dSK (v).

Moral of the story: surface area measure is the “derivative” of volume.
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Motivation

The Brunn-Minkowski inequality

V ((1 − t)K + tL)
1
n ≥ (1 − t)V (K )

1
n + tV (L)

1
n ,

“=” iff K and L are homothetic.

The Minkowski inequality
1
n

V1(K , L) =:
1
n

"

Sn−1
hL(v)dSK (v) ≥ V (L)

1
n V (K )

n−1
n ,

“=” iff K and L are homothetic.

The BM inequality is closely connected to the Minkowski problem.
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Motivation

The Minkowski inequality hints

inf
hL

#
1
n

"

Sn−1
hL(v)dµ : V (L) = 1

$

to solve the Minkowski problem.

If µ = SK and V (L) = 1, then the MI states:

1
n

"

Sn−1
hLdµ =

1
n

"

Sn−1
hLdSK ≥ V (K )

n−1
n V (L)

1
n = V (K )

n−1
n

with “=” iff K and L are homothetic.
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Motivation

The Minkowski inequality implies the uniqueness of the solution.

If SK = SL, then

V (L) =
1
n

"

Sn−1
hLdSL =

1
n

"

Sn−1
hLdSK ≥ V (K )

n−1
n V (L)

1
n

Therefore, V (L) ≥ V (K ).
Using the symmetry of the above argument, we see equality
holds. Hence K and L are translations of each other.

Existence and uniqueness of the Minkowski problem also implies the
Minkowski inequality with equality condition. (Klain, 2004)
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Solution to the classical Minkowski problem

There exists a solution K to the equation

µ = SK

if and only if µ is not concentrated in any proper subspaces and
"

Sn−1
vdµ(v) = o.

The solution is unique up to a translation.
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Minkowski problems—recent development

The Lp Minkowski problem (Lutwak, 1993 & 1996)

h1−p det(hij + hδij) = f

p = 0: log-Minkowski problem, log-Brunn-Minkowski conjecture.
p = −n: centro-affine Minkowski problem.

The (Lp) dual Minkowski problem (Huang-LYZ 2016):

(h2 + |∇h|2)
q−n

2 h1−p det(hij + hδij) = f

The (Lp) chord Minkowski problem (Xi-LYZ 2023):

h1−p %Vq−1(K ,Dh) det
&
hij + hδij) = f
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Minkowski problems—recent development

Akman, Andrews, Bianchi, Böröczky, Brendle, Bryan, Chen, Choi,
Chow, Cianchi, Cordero-Erausquin, Colesanti, Daskalopoulos, Dou,
Feng, Fimiani, Fodor, Fragalà, Gardner, Gluck, Gong, Goodey,
Grinberg, Guan, Guang, Haberl, He, Hegedűs, Henk, Hineman, Hong,
Hu, Huang, Hug, Ivaki, Jerison, Jian, Jiang, Klain, Klartag, Kolesnikov,
Kryvonos, Langharst, Leng, Lewis, Li, Lin, Linke, Liu, Livshyts, Long,
Lu, Lutwak, Ma, Marsiglietti, Milman, Miu, Ni, Nyström, Oliker, Pollehn,
Rotem, Saari, Salani, Saroglou, Scheuer, Schuster, Sheng, Schneider,
Semenov, Stancu, Sun, Trinh, Trudinger, Ulivelli, Umanskiy, Vogel,
Wang, Weil, Wu, Xi, Xia, Xie, Xing, Xiong, Xu, Xiao, Yang, Yaskin,
Yaskina,Ye, Zhang, Zhou, Zhu, ...
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Motivation

Question: Can we do this in Gaussian probability space?

Notation: Gaussian volume γn(K ) =
1

(
√

2π)n

"

K
e− |x|2

2 dx .
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What is known in Gaussian space

The Erhard inequality

Φ−1(γn((1 − t)K + tL)) ≥ (1 − t)Φ−1(γn(K )) + tΦ−1(γn(L)),

with “=” iff K = L. Here,

Φ(x) = γ1((−∞, x ]).

Borell, Shenfeld-van Handel...

Dimensional Gaussian Brunn-Minkowski inequality

γn((1 − t)K + tL)
1
n ≥ (1 − t)γn(K )

1
n + tγn(L)

1
n

for K , L origin-symmetric.

Gardner-Zvavitch 2010
Böröczky, Colesanti, Hosle, Kalantzopoulos, Kolesnikov, Livshyts,
Marsiglietti, Nayar, Ritoré, Saroglou, Tkocz, Yepes Nicolás, Zvavitch ...
Eskenazis-Moschidis 2021.
Yiming Zhao (Syracuse University) Gaussian Minkowski problem June 2023 12 / 32



The Gaussian surface area measure

We can define the Gaussian surface area measure Sγn,K by

lim
t→0+

γn(K + tL)− γn(K )

t
=

"

Sn−1
hLdSγn,K .

Here, Sγn,K is a finite Borel measure on Sn−1 given by

Sγn,K (η) =
1

(
√

2π)n

"

ν−1
K (η)

e− |x|2
2 dHn−1(x),

for each Borel set η ⊂ Sn−1.

Yiming Zhao (Syracuse University) Gaussian Minkowski problem June 2023 13 / 32



The Gaussian surface area measure

We can define the Gaussian surface area measure Sγn,K by

lim
t→0+

γn(K + tL)− γn(K )

t
=

"

Sn−1
hLdSγn,K .

Here, Sγn,K is a finite Borel measure on Sn−1 given by

Sγn,K (η) =
1

(
√

2π)n

"

ν−1
K (η)

e− |x|2
2 dHn−1(x),

for each Borel set η ⊂ Sn−1.

Problem (The Gaussian Minkowski problem)

Given a finite Borel measure µ on Sn−1, when is there a K such that
µ = Sγn,K ? Is K unique?
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The Gaussian Minkowski problem

Let µ be a finite Borel measure on Sn−1. Solve

µ = Sγn,K

To what extent is the solution unique?

1
(
√

2π)n
e− |∇h|2+h2

2 det(hij + hδij) = f .
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Gaussian MP v.s. the (classical) MP

There is an obvious obstruction: Ball and Nazarov showed

Sγn,K (S
n−1) ≲ n

1
4 .

(generalized by Livshyts)
No translation invariance
No homogeneity: a variational approach gets you as far as

µ = cSγn,K ,

where c comes from the Lagrange multiplier.
In general, cannot expect uniqueness—e−r2/2rn−1 is not 1-1.
Depending on what c is, there are two balls, or 1 ball, or no ball
such that

Sγn,K (v) = cdv . (*)

In addition, there might be non-ball solutions to (*).
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Uniqueness of big solution

Erhard inequality does give partial uniqueness results.

Theorem (Huang-Xi-Z. 2021)

If Sγn,K = Sγn,L and γn(K ), γn(L) ≥ 1
2 , then K = L.

Proof
Claim: γn(K ) = γn(L)
Write Ψ = Φ−1. Erhard inequality:

Ψ(γn((1 − t)K + tL)) ≥ (1 − t)Ψ(γn(K )) + tΨ(γn(L)).

Differentiating Erhard inequality gives

Ψ′(γn(K ))

"

Sn−1
hL − hK dSγn,K ≥ Ψ(γn(L))−Ψ(γn(K )),

Ψ′(γn(L))
"

Sn−1
hK − hLdSγn,L ≥ Ψ(γn(K ))−Ψ(γn(L)).
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Using Sγn,K = Sγn,L, we have

Ψ′(γn(L))
"

Sn−1
hL − hK dSγn,K ≤ Ψ(γn(L))−Ψ(γn(K )).

Hence,

Ψ(γn(L))−Ψ(γn(K ))

Ψ′(γn(K ))
≤

"

Sn−1
hL − hK dSγn,K ≤ Ψ(γn(L))−Ψ(γn(K ))

Ψ′(γn(L))

Or &
Ψ′(γn(K ))−Ψ′(γn(L))

'
(Ψ(γn(K ))−Ψ(γn(L))) ≤ 0.

The function Ψ and Ψ′ are strictly increasing on [1/2, 1]. Therefore,

γn(K ) = γn(L).
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Erhard inequality:

Ψ(γn((1 − t)K + tL)) ≥ (1 − t)Ψ(γn(K )) + tΨ(γn(L)).

Differentiate in t , one gets

Ψ′(γn(K ))

"

Sn−1
hL − hK dSγn,K ≥ Ψ(γn(L))−Ψ(γn(K )) = 0,

or "

Sn−1
hL − hK dSγn,K ≥ 0, with “ = ” iff K = L.

Hence,
"

Sn−1
hLdSγn,L =

"

Sn−1
hLdSγn,K ≥

"

Sn−1
hK Sγn,K .

Note that the arguments are symmetric in K and L. Therefore, “=”
holds.
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Existence of large solution

Uniqueness often hints strongly that one can prove existence.

Theorem (Huang-Xi-Z. 2021)

Let µ be an even measure on Sn−1 that is not concentrated in any
subspace and |µ| < 1√

2π
. Then there exists a unique origin-symmetric

K with γn(K ) > 1/2 such that

Sγn,K = µ.

Proof
Prove the existence of a smooth solution using degree theory.
Approximation to get a weak solution.

Remark
The symmetry assumption can be removed. γn(K ) > 1/2 makes lower
C0 bound trivial.
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Uniqueness of solution part 2

The motivation is that when using degree theory to prove the existence
of a solution, one only needs to establish the uniqueness of the
solution at one point (often when the data is constant).
In dim 2, the Gaussian Minkowski problem for constant data becomes

e− h′2+h2
2 (h′′ + h) = c. (**)

Theorem (Chen-Hu-Liu-Z. 2023+)
If h is a nonnegative solution to (**), then h has to be a constant
solution.

In particular, if 0 < c < e− 1
2 , there are precisely two solutions; if

c = e− 1
2 , there is exactly one solution; otherwise, there is no solution.

Motivated by (Andrews, 2003)—isotropic curvature flows.
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Uniqueness of solution part 2

Assuming h is a non-constant solution.
Idea:

Show that critical points of h must be isolated—only finitely many
of them.
Critical points must be min/max and they alternate.
Show that the distance between consecutive critical points only
depends on hmin and hmax.
The distance is represented as an integral Θ and must be π/k for
some positive integer k .
Show that no such k exists by estimating Θ.

We focus on the case c ∈ (0, e− 1
2 ). The other cases are easier.
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Uniqueness of solution part 2

Θ = ∆θ between two consecutive critical pts = const =
2π
2k

=
π

k
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Uniqueness of solution part 2

Lemma
Critical points are isolated.

Proof
By Caffarelli, the solution is smooth.
If θi is a sequence of critical points, where θi → θ0, then

h′(θ0) = 0

h′′(θ0) = lim
i→∞

h′(θi)− h′(θ0)

θi − θ0
= 0.

Hence, ODE e− h′2+h2
2 (h′′ + h) = c at θ0 becomes

e− h(θ0)
2

2 h(θ0) = c.

This has exactly two solutions h(θ0) = m1 or h(θ0) = m2.
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Uniqueness of solution part 2

Hence h solves the following IVP
(

e− h′2+h2
2 (h′′ + h) = c,

h(θ0) = m, h′(θ0) = 0,

By ODE theory, the solution is unique. But h ≡ m is a solution. This
contradicts the fact that h is nonconstant.
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Uniqueness of solution part 2

Write h0 = min h and h1 = maxh.

Lemma
If θ∗ is a critical point, then h(θ∗) = h0 or h1.

If h solves
e− h′2+h2

2 (h′′ + h) = c,

then
(e− h′2+h2

2 )′ = e− h′2+h2
2 (h′′ + h)(−h′) = −ch′,

or
e− h′2+h2

2 + ch ≡ E .
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Uniqueness of solution part 2

Proof.

Let G(t) = e−t2/2 + ct .
Observation:

E = e− h′(θ)2+h(θ)2

2 + ch(θ) ≤ e− h(θ)2

2 + ch(θ) = G(h(θ)).

with equality iff θ is a critical point. In particular, equality holds at θ∗
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Lemma
If h is a nonconstant solution, then there exists k such that

Θ(h0, r , c) :=
" 1

0

r)

−(tr + h0)2 − 2 log(e−
h2
0
2 − ctr)

dt = π/k ,

where r = h1 − h0.

Proof
Let θ0 < θ1 be a pair of consecutive critical points. Then

θ1 − θ0 =

" θ1

θ0

dθ =

" h1

h0

1
h′(θ(u))

du =

" h1

h0

1*
−u2 − 2 log(E − cu)

du

Here, we used the change of variable u = h(θ) and the relation

e− h′2+h2
2 + ch ≡ E .
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Further making the change of variable t = (u − h0)/r

" h1

h0

1*
−u2 − 2 log(E − cu)

du

=

" 1

0

r*
−(h0 + tr)2 − 2 log(E − c(h0 + tr))

dt .

Note that

e− h2
0
2 + ch0 = E .

Thus, we get Θ(h0, r , c).
Note that for a fixed c, the integral only depends on h0 and h1. Since
critical points are min/max, one after the other, there exists k such that

Θ(h0, r , c) = π/k .
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Integral estimates

We need to estimate

Θ(h0, r , c) =
" 1

0

r)

−(tr + h0)2 − 2 log(e−
h2
0
2 − ctr)

dt

subject to
G(h0) = G(h1)

h0 < 1 < h1

G′(h0) > 0, G′(h1) ≤ 0.
The first restriction implies that h0, r , c have only two degrees of
freedom. Fixing two will determine the other one.
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Integral estimates

Lemma
Fixing c and study Θ = Θ(r), one has

lim inf
r→0

Θ(r) ≥ π+
1 − m2

1

> π

Fixing h0 and study Θ = Θ(r), it is increasing—there is a subtle
point about the domain of r .
Fixing r and study Θ = Θ(c), it is increasing—there is a subtle
point about the domain of c.
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Uniqueness of solution part 2

Note that our uniqueness result in dimension 2 does not need to
assume a priori that h is symmetric.
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Uniqueness of solution part 2

Note that our uniqueness result in dimension 2 does not need to
assume a priori that h is symmetric.
Recently,

Theorem (Ivaki-Milman, 2023+)
If the centroid of K is at the origin and hK solves

e− |∇h|2+h2

2 det(∇2h + hI) = c,

then hK has to be a constant solution.

In particular, if K is known to be origin-symmetric, then h has to be
a constant solution.

Conjecture
In n ≥ 3, without any a priori assumption on h, is it true that h is a
constant solution?
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Existence of small solutions in 2d

Theorem (Chen-Hu-Liu-Z. 2023+)

Let f ∈ L1(S1) be an even function such that ‖f‖L1 < 1√
2π

. If there

exists τ > 0 such that 1
τ < f < τ almost everywhere on S1, then there

exists an origin-symmetric K with γ2(K ) < 1
2 such that

dSγ2,K (v) = f (v)dv .

Remark
Using Ivaki-Milman, this can be done similarly in dimension n.
Here, origin-symmetry is needed for lower bound C0 estimate.
There might be a way to get around this.
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