The Minkowski problem in Gaussian probability space

Yiming Zhao

Department of Mathematics Syracuse University

Joint work with Yong Huang, Dongmeng Xi, Shibing Chen, Shengnan Hu, Weiru Liu

INdAM Meeting "Convex Geometry - Analytic Aspects" at Cortona, Italy

Yiming Zhao (Syracuse University)

Gaussian Minkowski problem

June 2023 1 / 32

→ ∃ →

Motivation

The (classical) Minkowski problem

Let μ be a finite Borel measure on S^{n-1} . Find the necessary and sufficient conditions so that μ is the *surface area measure* of a convex body *K*.

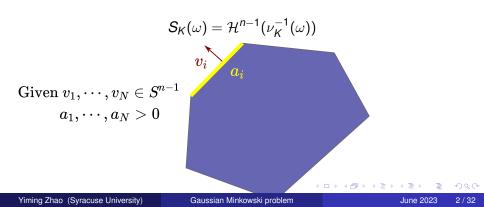
To what extent is the solution unique?

Motivation

The (classical) Minkowski problem

Let μ be a finite Borel measure on S^{n-1} . Find the necessary and sufficient conditions so that μ is the *surface area measure* of a convex body *K*.

To what extent is the solution unique?



Solve

$$\mu(\cdot) = \mathcal{S}_{\mathcal{K}}(\cdot).$$

When K is $C^{2,+}$,

$$S_{\mathcal{K}}(v)=\frac{1}{H_{n-1}(\mathcal{K},v)}dv.$$

When $\mu = fdv$, Monge-Ampère equation

$$\det(h_{ij} + h\delta_{ij}) = f.$$

Minkowski, Aleksandrov, Fenchel, Jessen, Cheng, Yau, Pogorelov, Caffarelli,...

A (1) > A (2) > A

Why study surface area measure?

Aleksandrov's variational formula

$$\frac{d}{dt}\Big|_{t=0} V(K+tL) = \int_{S^{n-1}} h_L(v) dS_K(v).$$

Moral of the story: surface area measure is the "derivative" of volume.

The Brunn-Minkowski inequality

$$V((1-t)K+tL)^{\frac{1}{n}} \ge (1-t)V(K)^{\frac{1}{n}}+tV(L)^{\frac{1}{n}},$$

"=" iff K and L are homothetic.

The Minkowski inequality

$$\frac{1}{n}V_1(K,L) =: \frac{1}{n}\int_{S^{n-1}} h_L(v) dS_K(v) \ge V(L)^{\frac{1}{n}}V(K)^{\frac{n-1}{n}},$$

"=" iff K and L are homothetic.

The BM inequality is closely connected to the Minkowski problem.

< 🗇 🕨 < 🖃 >

The Minkowski inequality hints

$$\inf_{h_L}\left\{\frac{1}{n}\int_{S^{n-1}}h_L(v)d\mu:V(L)=1\right\}$$

to solve the Minkowski problem.

• If $\mu = S_K$ and V(L) = 1, then the MI states:

$$\frac{1}{n}\int_{S^{n-1}}h_L d\mu = \frac{1}{n}\int_{S^{n-1}}h_L dS_K \ge V(K)^{\frac{n-1}{n}}V(L)^{\frac{1}{n}} = V(K)^{\frac{n-1}{n}}$$

with "=" iff K and L are homothetic.

The Minkowski inequality implies the uniqueness of the solution.

• If $S_K = S_L$, then

$$V(L) = \frac{1}{n} \int_{S^{n-1}} h_L dS_L = \frac{1}{n} \int_{S^{n-1}} h_L dS_K \ge V(K)^{\frac{n-1}{n}} V(L)^{\frac{1}{n}}$$

Therefore, $V(L) \ge V(K)$.

Using the symmetry of the above argument, we see equality holds. Hence K and L are translations of each other.

Existence and uniqueness of the Minkowski problem also implies the Minkowski inequality with equality condition. (Klain, 2004)

A (10) A (10) A (10)

There exists a solution K to the equation

$$\mu = S_K$$

if and only if μ is not concentrated in any proper subspaces and

$$\int_{\mathcal{S}^{n-1}} v d\mu(v) = o.$$

The solution is unique up to a translation.

Minkowski problems—recent development

• The *L_p* Minkowski problem (Lutwak, 1993 & 1996)

$$h^{1-p} \det(h_{ij} + h\delta_{ij}) = f$$

- *p* = 0: log-Minkowski problem, log-Brunn-Minkowski conjecture.
 p = -*n*: centro-affine Minkowski problem.
- The (*L_p*) dual Minkowski problem (Huang-LYZ 2016):

$$(h^2 + |\nabla h|^2)^{\frac{q-n}{2}} h^{1-p} \det(h_{ij} + h\delta_{ij}) = f$$

• The (L_p) chord Minkowski problem (Xi-LYZ 2023):

$$h^{1-p}\widetilde{V}_{q-1}(K,Dh)\det(h_{ij}+h\delta_{ij})=f$$

Akman, Andrews, Bianchi, Böröczky, Brendle, Bryan, Chen, Choi, Chow, Cianchi, Cordero-Erausquin, Colesanti, Daskalopoulos, Dou, Feng, Fimiani, Fodor, Fragalà, Gardner, Gluck, Gong, Goodey, Grinberg, Guan, Guang, Haberl, He, Hegedűs, Henk, Hineman, Hong, Hu, Huang, Hug, Ivaki, Jerison, Jian, Jiang, Klain, Klartag, Kolesnikov, Kryvonos, Langharst, Leng, Lewis, Li, Lin, Linke, Liu, Livshyts, Long, Lu, Lutwak, Ma, Marsiglietti, Milman, Miu, Ni, Nyström, Oliker, Pollehn, Rotem, Saari, Salani, Saroglou, Scheuer, Schuster, Sheng, Schneider, Semenov, Stancu, Sun, Trinh, Trudinger, Ulivelli, Umanskiy, Vogel, Wang, Weil, Wu, Xi, Xia, Xie, Xing, Xiong, Xu, Xiao, Yang, Yaskin, Yaskina.Ye. Zhang, Zhou, Zhu, ...

Question: Can we do this in Gaussian probability space?

Notation: Gaussian volume $\gamma_n(K) = \frac{1}{(\sqrt{2\pi})^n} \int_K e^{-\frac{|x|^2}{2}} dx.$

< 🗇 🕨 < 🖻 🕨

What is known in Gaussian space

The Erhard inequality

$$\Phi^{-1}(\gamma_n((1-t)K+tL)) \ge (1-t)\Phi^{-1}(\gamma_n(K)) + t\Phi^{-1}(\gamma_n(L)),$$

with "=" iff K = L. Here,

$$\Phi(\mathbf{x}) = \gamma_1((-\infty, \mathbf{x}]).$$

Borell, Shenfeld-van Handel...

Dimensional Gaussian Brunn-Minkowski inequality

$$\gamma_n((1-t)K+tL)^{\frac{1}{n}} \geq (1-t)\gamma_n(K)^{\frac{1}{n}} + t\gamma_n(L)^{\frac{1}{n}}$$

for K, L origin-symmetric.

Gardner-Zvavitch 2010 Böröczky, Colesanti, Hosle, Kalantzopoulos, Kolesnikov, Livshyts, Marsiglietti, Nayar, Ritoré, Saroglou, Tkocz, Yepes Nicolás, Zvavitch ... Eskenazis-Moschidis 2021. June 2023 12/32

Yiming Zhao (Syracuse University)

Gaussian Minkowski problem

The Gaussian surface area measure

We can define the *Gaussian surface area measure* $S_{\gamma_n,K}$ by

$$\lim_{t\to 0^+}\frac{\gamma_n(K+tL)-\gamma_n(K)}{t}=\int_{S^{n-1}}h_L dS_{\gamma_n,K}.$$

Here, $S_{\gamma_n,K}$ is a finite Borel measure on S^{n-1} given by

$$\mathcal{S}_{\gamma_n,\mathcal{K}}(\eta)=rac{1}{(\sqrt{2\pi})^n}\int_{
u_{\mathcal{K}}^{-1}(\eta)}e^{-rac{|x|^2}{2}}d\mathcal{H}^{n-1}(x),$$

for each Borel set $\eta \subset S^{n-1}$.

The Gaussian surface area measure

We can define the *Gaussian surface area measure* $S_{\gamma_n,K}$ by

$$\lim_{t\to 0^+}\frac{\gamma_n(K+tL)-\gamma_n(K)}{t}=\int_{S^{n-1}}h_L dS_{\gamma_n,K}.$$

Here, $S_{\gamma_n,K}$ is a finite Borel measure on S^{n-1} given by

$$\mathcal{S}_{\gamma_n,\mathcal{K}}(\eta)=rac{1}{(\sqrt{2\pi})^n}\int_{
u_{\mathcal{K}}^{-1}(\eta)}e^{-rac{|x|^2}{2}}d\mathcal{H}^{n-1}(x),$$

for each Borel set $\eta \subset S^{n-1}$.

Problem (The Gaussian Minkowski problem)

Given a finite Borel measure μ on S^{n-1} , when is there a K such that $\mu = S_{\gamma_n,K}$? Is K unique?

Let μ be a finite Borel measure on S^{n-1} . Solve

$$\mu = S_{\gamma_n, k}$$

To what extent is the solution unique?

$$\frac{1}{(\sqrt{2\pi})^n}e^{-\frac{|\nabla h|^2+h^2}{2}}\det(h_{ij}+h\delta_{ij})=f.$$

Yiming Zhao (Syracuse University)

Gaussian MP v.s. the (classical) MP

• There is an obvious obstruction: Ball and Nazarov showed

$$\mathbf{S}_{\gamma_n,K}(\mathbf{S}^{n-1}) \lesssim n^{rac{1}{4}}.$$

(generalized by Livshyts)

- No translation invariance
- No homogeneity: a variational approach gets you as far as

$$\mu = \mathbf{cS}_{\gamma_n, \mathbf{K}},$$

where *c* comes from the Lagrange multiplier.

In general, cannot expect uniqueness—e^{-r²/2}rⁿ⁻¹ is not 1-1.
 Depending on what *c* is, there are two balls, or 1 ball, or no ball such that

$$S_{\gamma_n,K}(v) = cdv.$$
 (*)

In addition, there *might* be non-ball solutions to (*).

Uniqueness of big solution

Erhard inequality does give partial uniqueness results.

Theorem (Huang-Xi-Z. 2021)

If
$$S_{\gamma_n,K} = S_{\gamma_n,L}$$
 and $\gamma_n(K), \gamma_n(L) \geq \frac{1}{2}$, then $K = L$.

Proof

Claim: $\gamma_n(K) = \gamma_n(L)$ Write $\Psi = \Phi^{-1}$. Erhard inequality:

$$\Psi(\gamma_n((1-t)K+tL)) \ge (1-t)\Psi(\gamma_n(K)) + t\Psi(\gamma_n(L)).$$

Differentiating Erhard inequality gives

$$\Psi'(\gamma_n(K))\int_{\mathcal{S}^{n-1}}h_L-h_Kd\mathcal{S}_{\gamma_n,K}\geq \Psi(\gamma_n(L))-\Psi(\gamma_n(K)),$$

$$\Psi'(\gamma_n(L))\int_{S^{n-1}}h_{\mathcal{K}}-h_L dS_{\gamma_n,L}\geq \Psi(\gamma_n(\mathcal{K}))-\Psi(\gamma_n(L)).$$

Yiming Zhao (Syracuse University)

Using $S_{\gamma_n,K} = S_{\gamma_n,L}$, we have

$$\Psi'(\gamma_n(L))\int_{S^{n-1}}h_L-h_KdS_{\gamma_n,K}\leq \Psi(\gamma_n(L))-\Psi(\gamma_n(K)).$$

Hence,

$$\frac{\Psi(\gamma_n(L)) - \Psi(\gamma_n(K))}{\Psi'(\gamma_n(K))} \leq \int_{\mathcal{S}^{n-1}} h_L - h_K dS_{\gamma_n,K} \leq \frac{\Psi(\gamma_n(L)) - \Psi(\gamma_n(K))}{\Psi'(\gamma_n(L))}$$

Or

$$(\Psi'(\gamma_n(\mathcal{K})) - \Psi'(\gamma_n(\mathcal{L}))) (\Psi(\gamma_n(\mathcal{K})) - \Psi(\gamma_n(\mathcal{L}))) \leq 0.$$

The function Ψ and Ψ' are strictly increasing on [1/2, 1]. Therefore,

$$\gamma_n(K) = \gamma_n(L).$$

Yiming Zhao (Syracuse University)

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Erhard inequality:

$$\Psi(\gamma_n((1-t)K+tL)) \ge (1-t)\Psi(\gamma_n(K)) + t\Psi(\gamma_n(L))$$

Differentiate in *t*, one gets

$$\Psi'(\gamma_n(K))\int_{\mathcal{S}^{n-1}}h_L-h_Kd\mathcal{S}_{\gamma_n,K}\geq \Psi(\gamma_n(L))-\Psi(\gamma_n(K))=0,$$

\sim	r
υ	L

$$\int_{\mathcal{S}^{n-1}} h_L - h_K dS_{\gamma_n, K} \ge 0, \text{ with "} = " \text{ iff } K = L.$$

Hence,

$$\int_{\mathcal{S}^{n-1}} h_L d\mathcal{S}_{\gamma_n,L} = \int_{\mathcal{S}^{n-1}} h_L d\mathcal{S}_{\gamma_n,K} \geq \int_{\mathcal{S}^{n-1}} h_K \mathcal{S}_{\gamma_n,K}.$$

Note that the arguments are symmetric in K and L. Therefore, "=" holds.

Yiming Zhao (Syracuse University)

イロト イヨト イヨト イヨト

П

Existence of large solution

Uniqueness often hints strongly that one can prove existence.

Theorem (Huang-Xi-Z. 2021)

Let μ be an even measure on S^{n-1} that is not concentrated in any subspace and $|\mu| < \frac{1}{\sqrt{2\pi}}$. Then there exists a unique origin-symmetric *K* with $\gamma_n(K) > 1/2$ such that

$$S_{\gamma_n,K} = \mu.$$

Proof

Prove the existence of a smooth solution using degree theory.

Approximation to get a weak solution.

Remark

The symmetry assumption can be removed. $\gamma_n(K) > 1/2$ makes lower C^0 bound trivial.

Yiming Zhao (Syracuse University)

The motivation is that when using degree theory to prove the existence of a solution, one only needs to establish the uniqueness of the solution at one point (often when the data is constant). In dim 2, the Gaussian Minkowski problem for constant data becomes

$$e^{-\frac{h'^2+h^2}{2}}(h''+h)=c.$$
 (**)

Theorem (Chen-Hu-Liu-Z. 2023+)

If h is a nonnegative solution to (**), then h has to be a constant solution.

In particular, if $0 < c < e^{-\frac{1}{2}}$, there are precisely two solutions; if $c = e^{-\frac{1}{2}}$, there is exactly one solution; otherwise, there is no solution. Motivated by (Andrews, 2003)—isotropic curvature flows.

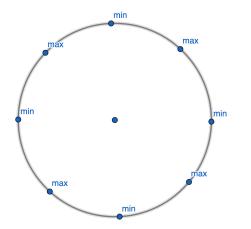
Assuming *h* is a non-constant solution.

Idea:

- Show that critical points of *h* must be isolated—only finitely many of them.
- 2 Critical points must be min/max and they alternate.
- Show that the distance between consecutive critical points only depends on h_{\min} and h_{\max} .
- The distance is represented as an integral Θ and must be π/k for some positive integer k.
- Show that no such k exists by estimating Θ .

We focus on the case $c \in (0, e^{-\frac{1}{2}})$. The other cases are easier.

Uniqueness of solution part 2



 $\Theta = \Delta \theta$ between two consecutive critical pts = const = $\frac{2\pi}{2k} = \frac{\pi}{k}$

Yiming Zhao (Syracuse University)

Gaussian Minkowski problem

June 2023 22 / 32

Uniqueness of solution part 2

Lemma

Critical points are isolated.

Proof

By Caffarelli, the solution is smooth.

If θ_i is a sequence of critical points, where $\theta_i \rightarrow \theta_0$, then

$$egin{aligned} h'(heta_0) &= \mathbf{0} \ h''(heta_0) &= \lim_{i o \infty} rac{h'(heta_i) - h'(heta_0)}{ heta_i - heta_0} = \mathbf{0}. \end{aligned}$$

Hence, ODE $e^{-\frac{h'^2+h^2}{2}}(h''+h)=c$ at θ_0 becomes

$$e^{-\frac{h(\theta_0)^2}{2}}h(\theta_0)=c.$$

This has exactly two solutions $h(\theta_0) = m_1$ or $h(\theta_0) = m_2$.

Yiming Zhao (Syracuse University)

Hence h solves the following IVP

$$\left\{egin{array}{l} e^{-rac{h'^2+h^2}{2}}(h''+h)=c,\ h(heta_0)=m, \quad h'(heta_0)=0, \end{array}
ight.$$

By ODE theory, the solution is unique. But $h \equiv m$ is a solution. This contradicts the fact that *h* is nonconstant.

Write
$$h_0 = \min h$$
 and $h_1 = \max h$.

Lemma

If θ_* is a critical point, then $h(\theta_*) = h_0$ or h_1 .

If h solves

$$e^{-rac{h'^2+h^2}{2}}(h''+h)=c,$$

then

$$(e^{-\frac{h'^2+h^2}{2}})' = e^{-\frac{h'^2+h^2}{2}}(h''+h)(-h') = -ch',$$

or

$$e^{-\frac{h'^2+h^2}{2}}+ch\equiv E.$$

• • • • • • • • • • • •

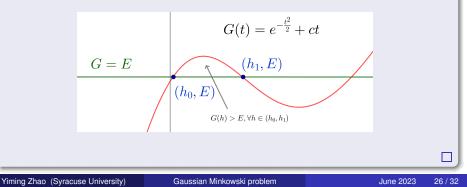
Uniqueness of solution part 2

Proof.

Let $G(t) = e^{-t^2/2} + ct$. Observation:

$${\sf E}={\sf e}^{-rac{h'(heta)^2+h(heta)^2}{2}}+{\sf ch}(heta)\leq {\sf e}^{-rac{h(heta)^2}{2}}+{\sf ch}(heta)={\sf G}({\sf h}(heta)).$$

with equality iff θ is a critical point. In particular, equality holds at θ_*



Lemma

If h is a nonconstant solution, then there exists k such that

$$\Theta(h_0, r, c) := \int_0^1 \frac{r}{\sqrt{-(tr+h_0)^2 - 2\log(e^{-\frac{h_0^2}{2}} - ctr)}} dt = \pi/k,$$

where $r = h_1 - h_0$.

Proof

Let $\theta_0 < \theta_1$ be a pair of consecutive critical points. Then

$$\theta_1 - \theta_0 = \int_{\theta_0}^{\theta_1} d\theta = \int_{h_0}^{h_1} \frac{1}{h'(\theta(u))} du = \int_{h_0}^{h_1} \frac{1}{\sqrt{-u^2 - 2\log(E - cu)}} du$$

Here, we used the change of variable $u = h(\theta)$ and the relation

$$e^{-rac{h'^2+h^2}{2}}+ch\equiv E.$$

Yiming Zhao (Syracuse University)

Further making the change of variable $t = (u - h_0)/r$

$$\int_{h_0}^{h_1} \frac{1}{\sqrt{-u^2 - 2\log(E - cu)}} du$$
$$= \int_0^1 \frac{r}{\sqrt{-(h_0 + tr)^2 - 2\log(E - c(h_0 + tr))}} dt.$$

Note that

$$e^{-rac{h_0^2}{2}}+ch_0=E.$$

Thus, we get $\Theta(h_0, r, c)$.

Note that for a fixed *c*, the integral only depends on h_0 and h_1 . Since critical points are min/max, one after the other, there exists *k* such that

$$\Theta(h_0, r, c) = \pi/k.$$

• • • • • • • • • • • • •

We need to estimate

$$\Theta(h_0, r, c) = \int_0^1 \frac{r}{\sqrt{-(tr+h_0)^2 - 2\log(e^{-\frac{h_0^2}{2}} - ctr)}} dt$$

subject to

1

 $\bigcirc G(h_0) = G(h_1)$

2)
$$h_0 < 1 < h_1$$

3
$$G'(h_0) > 0, G'(h_1) \le 0.$$

The first restriction implies that h_0, r, c have only two degrees of freedom. Fixing two will determine the other one.

< 17 ▶

- A 🖻 🕨

Lemma

• Fixing c and study $\Theta = \Theta(r)$, one has

$$\liminf_{r\to 0} \Theta(r) \geq \frac{\pi}{\sqrt{1-m_1^2}} > \pi$$

- Fixing h₀ and study Θ = Θ(r), it is increasing—there is a subtle point about the domain of r.
- Fixing r and study Θ = Θ(c), it is increasing—there is a subtle point about the domain of c.

・ロト ・ 同ト ・ ヨト ・ ヨ

Uniqueness of solution part 2

 Note that our uniqueness result in dimension 2 does not need to assume a priori that h is symmetric.

Uniqueness of solution part 2

- Note that our uniqueness result in dimension 2 does not need to assume a priori that h is symmetric.
- Recently,

Theorem (Ivaki-Milman, 2023+)

If the centroid of K is at the origin and h_K solves

$$e^{-rac{|
abla h|^2+h^2}{2}} \det(
abla^2 h+hI)=c,$$

then h_K has to be a constant solution.

In particular, if K is known to be origin-symmetric, then h has to be a constant solution.

Conjecture

In $n \ge 3$, without any *a priori* assumption on *h*, is it true that *h* is a constant solution?

Yiming Zhao (Syracuse University)

Gaussian Minkowski problem

June 2023 31 / 32

Theorem (Chen-Hu-Liu-Z. 2023+)

Let $f \in L^1(S^1)$ be an even function such that $||f||_{L^1} < \frac{1}{\sqrt{2\pi}}$. If there exists $\tau > 0$ such that $\frac{1}{\tau} < f < \tau$ almost everywhere on S^1 , then there exists an origin-symmetric K with $\gamma_2(K) < \frac{1}{2}$ such that

$$dS_{\gamma_2,K}(v) = f(v)dv.$$

Remark

• Using Ivaki-Milman, this can be done similarly in dimension n.

Here, origin-symmetry is needed for lower bound C⁰ estimate.
 There might be a way to get around this.

イロン イ理 とくほ とくほ とう