The Minkowski problem in Gaussian probability space

Yiming Zhao
Department of Mathematics
Syracuse University
Joint work with Yong Huang, Dongmeng Xi, Shibing Chen, Shengnan Hu, Weiru Liu

INdAM Meeting “Convex Geometry - Analytic Aspects”
at Cortona, Italy
Motivation

The (classical) Minkowski problem

Let μ be a finite Borel measure on S^{n-1}. Find the necessary and sufficient conditions so that μ is the surface area measure of a convex body K.

To what extent is the solution unique?
Motivation

The (classical) Minkowski problem

Let μ be a finite Borel measure on S^{n-1}. Find the necessary and sufficient conditions so that μ is the surface area measure of a convex body K.

To what extent is the solution unique?

$$S_K(\omega) = \mathcal{H}^{n-1}(\nu_K^{-1}(\omega))$$

Given $v_1, \ldots, v_N \in S^{n-1}$

$$a_1, \ldots, a_N > 0$$
Motivation

Solve

\[\mu(\cdot) = S_K(\cdot). \]

When \(K \) is \(C^2,^+ \),

\[S_K(\nu) = \frac{1}{H_{n-1}(K, \nu)} dv. \]

When \(\mu = f dv \), Monge-Ampère equation

\[\det(h_{ij} + h\delta_{ij}) = f. \]

Minkowski, Aleksandrov, Fenchel, Jessen, Cheng, Yau, Pogorelov, Caffarelli,...
Motivation

Why study *surface area measure*?

Aleksandrov’s variational formula

\[
\left. \frac{d}{dt} \right|_{t=0} V(K + tL) = \int_{S^{n-1}} h_L(v) dS_K(v).
\]

Moral of the story: *surface area measure* is the “derivative” of volume.
Motivation

The Brunn-Minkowski inequality

$$V((1 - t)K + tL)^{\frac{1}{n}} \geq (1 - t)V(K)^{\frac{1}{n}} + tV(L)^{\frac{1}{n}},$$

“=” iff K and L are homothetic.

The Minkowski inequality

$$\frac{1}{n} V_1(K, L) := \frac{1}{n} \int_{S^{n-1}} h_L(v) dS_K(v) \geq V(L)^{\frac{1}{n}} V(K)^{\frac{n-1}{n}},$$

“=” iff K and L are homothetic.

The BM inequality is closely connected to the Minkowski problem.
Motivation

The Minkowski inequality hints
\[\inf_{h_L} \left\{ \frac{1}{n} \int_{S^{n-1}} h_L(v) d\mu : V(L) = 1 \right\} \]
to solve the Minkowski problem.

- If \(\mu = S_K \) and \(V(L) = 1 \), then the MI states:
 \[\frac{1}{n} \int_{S^{n-1}} h_L d\mu = \frac{1}{n} \int_{S^{n-1}} h_L dS_K \geq V(K)^{\frac{n-1}{n}} V(L)^{\frac{1}{n}} = V(K)^{\frac{n-1}{n}} \]
 with \(= \) iff \(K \) and \(L \) are homothetic.
Motivation

The Minkowski inequality implies the uniqueness of the solution.

If \(S_K = S_L \), then

\[
V(L) = \frac{1}{n} \int_{S^{n-1}} h_L dS_L = \frac{1}{n} \int_{S^{n-1}} h_L dS_K \geq V(K)^{\frac{n-1}{n}} V(L)^{\frac{1}{n}}
\]

Therefore, \(V(L) \geq V(K) \).

Using the symmetry of the above argument, we see equality holds. Hence \(K \) and \(L \) are translations of each other.

Existence and uniqueness of the Minkowski problem also implies the Minkowski inequality with equality condition. (Klain, 2004)
There exists a solution K to the equation

$$\mu = S_K$$

if and only if μ is not concentrated in any proper subspaces and

$$\int_{S^{n-1}} v d\mu(v) = o.$$

The solution is unique up to a translation.
The L_p Minkowski problem (Lutwak, 1993 & 1996)

$$h^{1-p} \det(h_{ij} + h\delta_{ij}) = f$$

The (L_p) dual Minkowski problem (Huang-LYZ 2016):

$$(h^2 + |\nabla h|^2)^{\frac{q-n}{2}} h^{1-p} \det(h_{ij} + h\delta_{ij}) = f$$

The (L_p) chord Minkowski problem (Xi-LYZ 2023):

$$h^{1-p} \tilde{V}_{q-1}(K, Dh) \det(h_{ij} + h\delta_{ij}) = f$$
Minkowski problems—recent development

Question: Can we do this in Gaussian probability space?

Notation: Gaussian volume $\gamma_n(K) = \frac{1}{(\sqrt{2\pi})^n} \int_K e^{-\frac{|x|^2}{2}} dx$.
What is known in Gaussian space

The Erhard inequality

\[\Phi^{-1}(\gamma_n((1 - t)K + tL)) \geq (1 - t)\Phi^{-1}(\gamma_n(K)) + t\Phi^{-1}(\gamma_n(L)) \]

with “=” iff \(K = L \). Here,

\[\Phi(x) = \gamma_1((−\infty, x]) \].

Borell, Shenfeld-van Handel...

Dimensional Gaussian Brunn-Minkowski inequality

\[\gamma_n((1 - t)K + tL)^{\frac{1}{n}} \geq (1 - t)\gamma_n(K)^{\frac{1}{n}} + t\gamma_n(L)^{\frac{1}{n}} \]

for \(K, L \) origin-symmetric.

Gardner-Zvavitch 2010
Böröczky, Colesanti, Hosle, Kalantzopoulos, Kolesnikov, Livshyts, Marsiglietti, Nayar, Ritoré, Saroglou, Tkocz, Yepes Nicolás, Zvavitch ...
Eskenazis-Moschidis 2021.
The Gaussian surface area measure

We can define the *Gaussian surface area measure* \(S_{\gamma_n,K} \) by

\[
\lim_{t \to 0^+} \frac{\gamma_n(K + tL) - \gamma_n(K)}{t} = \int_{S^{n-1}} h_L dS_{\gamma_n,K}.
\]

Here, \(S_{\gamma_n,K} \) is a finite Borel measure on \(S^{n-1} \) given by

\[
S_{\gamma_n,K}(\eta) = \frac{1}{(\sqrt{2\pi})^n} \int_{\nu_K^{-1}(\eta)} e^{-\frac{|x|^2}{2}} d\mathcal{H}^{n-1}(x),
\]

for each Borel set \(\eta \subset S^{n-1} \).
The Gaussian surface area measure

We can define the Gaussian surface area measure $S_{\gamma_n,K}$ by

$$\lim_{t \to 0^+} \frac{\gamma_n(K + tL) - \gamma_n(K)}{t} = \int_{S^{n-1}} h_L dS_{\gamma_n,K}.$$

Here, $S_{\gamma_n,K}$ is a finite Borel measure on S^{n-1} given by

$$S_{\gamma_n,K}(\eta) = \frac{1}{(\sqrt{2\pi})^n} \int_{\nu_K^{-1}(\eta)} e^{-\frac{|x|^2}{2}} d\mathcal{H}^{n-1}(x),$$

for each Borel set $\eta \subset S^{n-1}$.

Problem (The Gaussian Minkowski problem)

Given a finite Borel measure μ on S^{n-1}, when is there a K such that $\mu = S_{\gamma_n,K}$? Is K unique?
Let μ be a finite Borel measure on S^{n-1}. Solve

$$\mu = S_{\gamma_n,K}$$

To what extent is the solution unique?

$$\frac{1}{(\sqrt{2\pi})^n} e^{-\frac{1}{2} |\nabla h|^2 + h^2} \det(h_{ij} + h\delta_{ij}) = f.$$
There is an obvious obstruction: Ball and Nazarov showed

\[S_{\gamma n,k}(S^{n-1}) \lesssim n^{\frac{1}{4}}. \]

(generalized by Livshyts)

- No translation invariance
- No homogeneity: a variational approach gets you as far as

\[\mu = cS_{\gamma n,k}, \]

where \(c \) comes from the Lagrange multiplier.

In general, cannot expect uniqueness—\(e^{-r^2/2}r^{n-1} \) is not 1-1. Depending on what \(c \) is, there are two balls, or 1 ball, or no ball such that

\[S_{\gamma n,k}(\nu) = cd\nu. \] (*)

In addition, there might be non-ball solutions to (*).
Uniqueness of big solution

Erhard inequality does give partial uniqueness results.

Theorem (Huang-Xi-Z. 2021)

If $S_{\gamma n,K} = S_{\gamma n,L}$ and $\gamma_n(K), \gamma_n(L) \geq \frac{1}{2}$, then $K = L$.

Proof

Claim: $\gamma_n(K) = \gamma_n(L)$

Write $\Psi = \Phi^{-1}$. Erhard inequality:

$$\Psi(\gamma_n((1 - t)K + tL)) \geq (1 - t)\Psi(\gamma_n(K)) + t\Psi(\gamma_n(L)).$$

Differentiating Erhard inequality gives

$$\Psi'(\gamma_n(K)) \int_{S^{n-1}} h_L - h_K dS_{\gamma n,K} \geq \Psi(\gamma_n(L)) - \Psi(\gamma_n(K)),$$

$$\Psi'(\gamma_n(L)) \int_{S^{n-1}} h_K - h_L dS_{\gamma n,L} \geq \Psi(\gamma_n(K)) - \Psi(\gamma_n(L)).$$
Using $S_{\gamma_n, K} = S_{\gamma_n, L}$, we have

\[
\psi'(\gamma_n(L)) \int_{S^{n-1}} h_L - h_K dS_{\gamma_n, K} \leq \psi(\gamma_n(L)) - \psi(\gamma_n(K)).
\]

Hence,

\[
\frac{\psi(\gamma_n(L)) - \psi(\gamma_n(K))}{\psi'(\gamma_n(K))} \leq \int_{S^{n-1}} h_L - h_K dS_{\gamma_n, K} \leq \frac{\psi(\gamma_n(L)) - \psi(\gamma_n(K))}{\psi'(\gamma_n(L))}
\]

Or

\[
(\psi'(\gamma_n(K)) - \psi'(\gamma_n(L))) (\psi(\gamma_n(K)) - \psi(\gamma_n(L))) \leq 0.
\]

The function ψ and ψ' are strictly increasing on $[1/2, 1]$. Therefore,

\[
\gamma_n(K) = \gamma_n(L).
\]
Erhard inequality:

\[\psi(\gamma_n((1 - t)K + tL)) \geq (1 - t)\psi(\gamma_n(K)) + t\psi(\gamma_n(L)). \]

Differentiate in \(t \), one gets

\[\psi'(\gamma_n(K)) \int_{S^{n-1}} h_L - h_K dS_{\gamma_n,K} \geq \psi(\gamma_n(L)) - \psi(\gamma_n(K)) = 0, \]

or

\[\int_{S^{n-1}} h_L - h_K dS_{\gamma_n,K} \geq 0, \text{ with } "\geq" \text{ iff } K = L. \]

Hence,

\[\int_{S^{n-1}} h_L dS_{\gamma_n,L} = \int_{S^{n-1}} h_L dS_{\gamma_n,K} \geq \int_{S^{n-1}} h_K S_{\gamma_n,K}. \]

Note that the arguments are symmetric in \(K \) and \(L \). Therefore, "\(= \)" holds.
Existence of large solution

Uniqueness often hints strongly that one can prove existence.

Theorem (Huang-Xi-Z. 2021)

Let μ be an even measure on S^{n-1} that is not concentrated in any subspace and $|\mu| < \frac{1}{\sqrt{2\pi}}$. Then there exists a unique origin-symmetric K with $\gamma_n(K) > 1/2$ such that

$$S_{\gamma_n, K} = \mu.$$

Proof

1. Prove the existence of a smooth solution using degree theory.
2. Approximation to get a weak solution.

Remark

The symmetry assumption can be removed. $\gamma_n(K) > 1/2$ makes lower C^0 bound trivial.
Uniqueness of solution part 2

The motivation is that when using degree theory to prove the existence of a solution, one only needs to establish the uniqueness of the solution at one point (often when the data is constant).

In dim 2, the Gaussian Minkowski problem for constant data becomes

\[e^{-\frac{h'^2 + h^2}{2}} (h' + h) = c. \] (**)

Theorem (Chen-Hu-Liu-Z. 2023+)

*If h is a nonnegative solution to (**), then h has to be a constant solution.*

In particular, if \(0 < c < e^{-\frac{1}{2}} \), there are precisely two solutions; if \(c = e^{-\frac{1}{2}} \), there is exactly one solution; otherwise, there is no solution. Motivated by (Andrews, 2003)—isotropic curvature flows.
Uniqueness of solution part 2

Assuming h is a non-constant solution.

Idea:

1. Show that critical points of h must be isolated—only finitely many of them.
2. Critical points must be min/max and they alternate.
3. Show that the distance between consecutive critical points only depends on h_{min} and h_{max}.
4. The distance is represented as an integral Θ and must be π/k for some positive integer k.
5. Show that no such k exists by estimating Θ.

We focus on the case $c \in (0, e^{-\frac{1}{2}})$. The other cases are easier.
Uniqueness of solution part 2

\[\Theta = \Delta \theta \] between two consecutive critical pts = const = \[\frac{2\pi}{2k} = \frac{\pi}{k} \].
Uniqueness of solution part 2

Lemma

Critical points are isolated.

Proof

By Caffarelli, the solution is smooth. If θ_i is a sequence of critical points, where $\theta_i \to \theta_0$, then

$$h'(\theta_0) = 0$$

$$h''(\theta_0) = \lim_{i \to \infty} \frac{h'(\theta_i) - h'(\theta_0)}{\theta_i - \theta_0} = 0.$$

Hence, ODE $e^{-\frac{h'^2 + h^2}{2}}(h'' + h) = c$ at θ_0 becomes

$$e^{-\frac{h(\theta_0)^2}{2}} h(\theta_0) = c.$$

This has exactly two solutions $h(\theta_0) = m_1$ or $h(\theta_0) = m_2$.
Hence h solves the following IVP
\[
\begin{cases}
 e^{-\frac{h'^2 + h^2}{2}} (h'' + h) = c, \\
 h(\theta_0) = m, \quad h'(\theta_0) = 0,
\end{cases}
\]
By ODE theory, the solution is unique. But $h \equiv m$ is a solution. This contradicts the fact that h is nonconstant.
Write $h_0 = \min h$ and $h_1 = \max h$.

Lemma

If θ_* is a critical point, then $h(\theta_*) = h_0$ or h_1.

If h solves

$$e^{-\frac{h'^2 + h^2}{2}} (h'' + h) = c,$$

then

$$(e^{-\frac{h'^2 + h^2}{2}})' = e^{-\frac{h'^2 + h^2}{2}} (h'' + h)(-h') = -ch',$$

or

$$e^{-\frac{h'^2 + h^2}{2}} + ch \equiv E.$$
Uniqueness of solution part 2

Proof.

Let $G(t) = e^{-t^2/2} + ct$.

Observation:

$$E = e^{-\frac{h'(\theta)^2 + h(\theta)^2}{2}} + ch(\theta) \leq e^{-\frac{h(\theta)^2}{2}} + ch(\theta) = G(h(\theta)).$$

with equality iff θ is a critical point. In particular, equality holds at θ^*.

$$G(t) = e^{-\frac{t^2}{2}} + ct$$
Lemma

If h is a nonconstant solution, then there exists k such that

$$
\Theta(h_0, r, c) := \int_0^1 \frac{r}{\sqrt{-(tr + h_0)^2 - 2 \log(e^{-\frac{h_0^2}{2}} - c tr)}} dt = \pi/k,
$$

where $r = h_1 - h_0$.

Proof

Let $\theta_0 < \theta_1$ be a pair of consecutive critical points. Then

$$
\theta_1 - \theta_0 = \int_{\theta_0}^{\theta_1} d\theta = \int_{h_0}^{h_1} \frac{1}{h'(\theta(u))} du = \int_{h_0}^{h_1} \frac{1}{\sqrt{-u^2 - 2 \log(E - cu)}} du
$$

Here, we used the change of variable $u = h(\theta)$ and the relation

$$
e^{-\frac{h'^2 + h^2}{2}} + ch \equiv E.$$

Further making the change of variable \(t = (u - h_0)/r \)

\[
\int_{h_0}^{h_1} \frac{1}{\sqrt{-u^2 - 2 \log(E - cu)}} du
= \int_0^1 \frac{r}{\sqrt{-(h_0 + tr)^2 - 2 \log(E - c(h_0 + tr))}} dt.
\]

Note that

\[e^{-\frac{h_0^2}{2}} + ch_0 = E. \]

Thus, we get \(\Theta(h_0, r, c) \).

Note that for a fixed \(c \), the integral only depends on \(h_0 \) and \(h_1 \). Since critical points are min/max, one after the other, there exists \(k \) such that

\[\Theta(h_0, r, c) = \pi/k. \]
Integral estimates

We need to estimate

$$\Theta(h_0, r, c) = \int_0^1 \frac{r}{\sqrt{-(tr + h_0)^2 - 2 \log(e^{-\frac{h_0^2}{2}} - ctr)}} dt$$

subject to

1. $G(h_0) = G(h_1)$
2. $h_0 < 1 < h_1$
3. $G'(h_0) > 0, G'(h_1) \leq 0$.

The first restriction implies that h_0, r, c have only two degrees of freedom. Fixing two will determine the other one.
Integral estimates

Lemma

Fixing c and study $\Theta = \Theta(r)$, one has

$$\liminf_{r \to 0} \Theta(r) \geq \frac{\pi}{\sqrt{1 - m^2_1}} > \pi$$

Fixing h_0 and study $\Theta = \Theta(r)$, it is increasing—there is a subtle point about the domain of r.

Fixing r and study $\Theta = \Theta(c)$, it is increasing—there is a subtle point about the domain of c.
Note that our uniqueness result in dimension 2 does \textit{not} need to assume \textit{a priori} that h is symmetric.
Uniqueness of solution part 2

- Note that our uniqueness result in dimension 2 does \textit{not} need to assume \textit{a priori} that h is symmetric.
- Recently,

\begin{theorem}[Ivaki-Milman, 2023+]
If the centroid of K is at the origin and h_K solves
\[e^{-\frac{|\nabla h|^2 + h^2}{2}} \det(\nabla^2 h + hl) = c, \]
then h_K has to be a constant solution.
\end{theorem}

In particular, if K is known to be origin-symmetric, then h has to be a constant solution.

\begin{conjecture}
In $n \geq 3$, without any \textit{a priori} assumption on h, is it true that h is a constant solution?
\end{conjecture}
Existence of small solutions in 2d

Theorem (Chen-Hu-Liu-Z. 2023+)

Let \(f \in L^1(S^1) \) be an even function such that \(\|f\|_{L^1} < \frac{1}{\sqrt{2\pi}} \). If there exists \(\tau > 0 \) such that \(\frac{1}{\tau} < f < \tau \) almost everywhere on \(S^1 \), then there exists an origin-symmetric \(K \) with \(\gamma_2(K) < \frac{1}{2} \) such that

\[
dS_{\gamma_2,K}(v) = f(v)dv.
\]

Remark

- Using Ivaki-Milman, this can be done similarly in dimension \(n \).
- Here, origin-symmetry is needed for lower bound \(C^0 \) estimate. There might be a way to get around this.