On complemented Brunn-Minkowski type inequalities

J. Yepes Nicolás

Universidad de Murcia
(joint work with A. Zvavitch)

INdAM Meeting

CONVEX GEOMETRY - ANALYTIC ASPECTS

Cortona
June 27th, 2023

The Brunn-Minkowski inequality for measures

Theorem (Borell-Brascamp\&Lieb)

Let μ be an absolutely continuous measure on \mathbb{R}^{n} associated to a p-concave density, with $p \in[-1 / n, \infty]$.
Let $K, L \subset \mathbb{R}^{n}$ be (non-empty) compact sets with $\mu(K) \mu(L)>0$ and let $\lambda \in(0,1)$. Then

$$
\mu((1-\lambda) K+\lambda L) \geq\left((1-\lambda) \mu(K)^{q}+\lambda \mu(L)^{q}\right)^{1 / q},
$$

where $q=p /(n p+1)$.

The Brunn-Minkowski inequality for measures

Theorem (Borell-Brascamp\&Lieb)

Let μ be an absolutely continuous measure on \mathbb{R}^{n} associated to a p-concave density, with $p \in[-1 / n, \infty]$.
Let $K, L \subset \mathbb{R}^{n}$ be (non-empty) compact sets with $\mu(K) \mu(L)>0$ and let $\lambda \in(0,1)$. Then

$$
\mu((1-\lambda) K+\lambda L) \geq\left((1-\lambda) \mu(K)^{q}+\lambda \mu(L)^{q}\right)^{1 / q}
$$

where $q=p /(n p+1)$.
The cases $p=\infty, 0,-1 / n$ (and so $q=1 / n, 0,-\infty$, respectively) must be understood as the ones that are obtained by continuity.

The Brunn-Minkowski inequality for measures

Theorem (Borell-Brascamp\&Lieb)

Let μ be an absolutely continuous measure on \mathbb{R}^{n} associated to a p-concave density, with $p \in[-1 / n, \infty]$.
Let $K, L \subset \mathbb{R}^{n}$ be (non-empty) compact sets with $\mu(K) \mu(L)>0$ and let $\lambda \in(0,1)$. Then

$$
\mu((1-\lambda) K+\lambda L) \geq\left((1-\lambda) \mu(K)^{q}+\lambda \mu(L)^{q}\right)^{1 / q},
$$

where $q=p /(n p+1)$.
The cases $p=\infty, 0,-1 / n$ (and so $q=1 / n, 0,-\infty$, respectively) must be understood as the ones that are obtained by continuity.

- $p=\infty, q=1 / n$.

The Brunn-Minkowski inequality for $\operatorname{vol}(\cdot)$

$$
\operatorname{vol}((1-\lambda) K+\lambda L)^{1 / n} \geq(1-\lambda) \operatorname{vol}(K)^{1 / n}+\lambda \operatorname{vol}(L)^{1 / n} .
$$

The Brunn-Minkowski inequality for measures

Theorem (Borell-Brascamp\&Lieb)

Let μ be an absolutely continuous measure on \mathbb{R}^{n} associated to a p-concave density, with $p \in[-1 / n, \infty]$.
Let $K, L \subset \mathbb{R}^{n}$ be (non-empty) compact sets with $\mu(K) \mu(L)>0$ and let $\lambda \in(0,1)$. Then

$$
\mu((1-\lambda) K+\lambda L) \geq\left((1-\lambda) \mu(K)^{q}+\lambda \mu(L)^{q}\right)^{1 / q}
$$

where $q=p /(n p+1)$.
The cases $p=\infty, 0,-1 / n$ (and so $q=1 / n, 0,-\infty$, respectively) must be understood as the ones that are obtained by continuity.

- $p=\infty, q=1 / n$.

The Brunn-Minkowski inequality for $\operatorname{vol}(\cdot)$

$$
\operatorname{vol}((1-\lambda) K+\lambda L)^{1 / n} \geq(1-\lambda) \operatorname{vol}(K)^{1 / n}+\lambda \operatorname{vol}(L)^{1 / n} .
$$

- $p=q=0$.

Brunn-Minkowski for the Gaussian measure $\gamma_{n}(\cdot)$
$\left(\mathrm{d} \gamma_{n}(x)=\frac{1}{(2 \pi)^{n / 2}} e^{\frac{-|x|^{2}}{2}} \mathrm{~d} x\right)$

$$
\gamma_{n}((1-\lambda) K+\lambda L) \geq \gamma_{n}(K)^{1-\lambda} \gamma_{n}(L)^{\lambda} .
$$

The dual Brunn-Minkowski inequality

The dual Brunn-Minkowski inequality

Let $K, L \subset \mathbb{R}^{n}$ be star bodies and let $\lambda \in(0,1)$. Then

$$
\operatorname{vol}((1-\lambda) K \widetilde{+} \lambda L)^{1 / n} \leq(1-\lambda) \operatorname{vol}(K)^{1 / n}+\lambda \operatorname{vol}(L)^{1 / n} .
$$

Equality holds if and only if $K=\alpha L$ with some $\alpha>0$.

The dual Brunn-Minkowski inequality

The dual Brunn-Minkowski inequality

Let $K, L \subset \mathbb{R}^{n}$ be star bodies and let $\lambda \in(0,1)$. Then

$$
\operatorname{vol}((1-\lambda) K \widetilde{+} \lambda L)^{1 / n} \leq(1-\lambda) \operatorname{vol}(K)^{1 / n}+\lambda \operatorname{vol}(L)^{1 / n} .
$$

Equality holds if and only if $K=\alpha L$ with some $\alpha>0$.
This inequality follows from the polar coordinates formula for volume jointly with Minkowski's integral inequality.

The dual Brunn-Minkowski inequality

The dual Brunn-Minkowski inequality

Let $K, L \subset \mathbb{R}^{n}$ be star bodies and let $\lambda \in(0,1)$. Then

$$
\operatorname{vol}((1-\lambda) K \widetilde{+} \lambda L)^{1 / n} \leq(1-\lambda) \operatorname{vol}(K)^{1 / n}+\lambda \operatorname{vol}(L)^{1 / n} .
$$

Equality holds if and only if $K=\alpha L$ with some $\alpha>0$.
This inequality follows from the polar coordinates formula for volume jointly with Minkowski's integral inequality.

We will say that K is a generalized star body if K is a starshaped set with continuous radial function ρ_{K} (on its support), but we do not impose it to be positive and finite, i.e., we allow that $0 \leq \rho_{K}(u) \leq \infty$ for any $u \in \mathbb{S}^{n-1}$.

The dual Brunn-Minkowski inequality

The dual Brunn-Minkowski inequality

Let $K, L \subset \mathbb{R}^{n}$ be star bodies and let $\lambda \in(0,1)$. Then

$$
\operatorname{vol}((1-\lambda) K \widetilde{+} \lambda L)^{1 / n} \leq(1-\lambda) \operatorname{vol}(K)^{1 / n}+\lambda \operatorname{vol}(L)^{1 / n} .
$$

Equality holds if and only if $K=\alpha L$ with some $\alpha>0$.
This inequality follows from the polar coordinates formula for volume jointly with Minkowski's integral inequality.

We will say that K is a generalized star body if K is a starshaped set with continuous radial function ρ_{K} (on its support), but we do not impose it to be positive and finite, i.e., we allow that $0 \leq \rho_{K}(u) \leq \infty$ for any $u \in \mathbb{S}^{n-1}$. Then, following the same proof, we have:

The above result holds true for generalized star bodies K and L.

Complemented Brunn-Minkowski inequalities

Given a q-concave measure on \mathbb{R}^{n}, namely, a measure satisfying

$$
\mu((1-\lambda) K+\lambda L) \geq\left((1-\lambda) \mu(K)^{q}+\lambda \mu(L)^{q}\right)^{1 / q}
$$

$\forall \lambda \in(0,1)$ and all Borel sets $K, L \subset \mathbb{R}^{n}$ with $\mu(K) \mu(L)>0$,

Complemented Brunn-Minkowski inequalities

Given a q-concave measure on \mathbb{R}^{n}, namely, a measure satisfying

$$
\mu((1-\lambda) K+\lambda L) \geq\left((1-\lambda) \mu(K)^{q}+\lambda \mu(L)^{q}\right)^{1 / q}
$$

$\forall \lambda \in(0,1)$ and all Borel sets $K, L \subset \mathbb{R}^{n}$ with $\mu(K) \mu(L)>0$, it is natural to wonder about a q-complemented concavity, i.e., whether

$$
\mu\left(\mathbb{R}^{n} \backslash((1-\lambda) K+\lambda L)\right) \leq\left((1-\lambda) \mu\left(\mathbb{R}^{n} \backslash K\right)^{q}+\lambda \mu\left(\mathbb{R}^{n} \backslash L\right)^{q}\right)^{1 / q}
$$

$\forall \lambda \in(0,1)$ and all Borel sets $K, L \subset \mathbb{R}^{n}$ s.t. $\mu\left(\mathbb{R}^{n} \backslash K\right), \mu\left(\mathbb{R}^{n} \backslash L\right)<\infty$.

Complemented Brunn-Minkowski inequalities

Given a q-concave measure on \mathbb{R}^{n}, namely, a measure satisfying

$$
\mu((1-\lambda) K+\lambda L) \geq\left((1-\lambda) \mu(K)^{q}+\lambda \mu(L)^{q}\right)^{1 / q}
$$

$\forall \lambda \in(0,1)$ and all Borel sets $K, L \subset \mathbb{R}^{n}$ with $\mu(K) \mu(L)>0$, it is natural to wonder about a q-complemented concavity, i.e., whether

$$
\mu\left(\mathbb{R}^{n} \backslash((1-\lambda) K+\lambda L)\right) \leq\left((1-\lambda) \mu\left(\mathbb{R}^{n} \backslash K\right)^{q}+\lambda \mu\left(\mathbb{R}^{n} \backslash L\right)^{q}\right)^{1 / q}
$$

$\forall \lambda \in(0,1)$ and all Borel sets $K, L \subset \mathbb{R}^{n}$ s.t. $\mu\left(\mathbb{R}^{n} \backslash K\right), \mu\left(\mathbb{R}^{n} \backslash L\right)<\infty$.
When (μ is finite and) $q=1$ both relations above are trivially equivalent,

Complemented Brunn-Minkowski inequalities

Given a q-concave measure on \mathbb{R}^{n}, namely, a measure satisfying

$$
\mu((1-\lambda) K+\lambda L) \geq\left((1-\lambda) \mu(K)^{q}+\lambda \mu(L)^{q}\right)^{1 / q}
$$

$\forall \lambda \in(0,1)$ and all Borel sets $K, L \subset \mathbb{R}^{n}$ with $\mu(K) \mu(L)>0$, it is natural to wonder about a q-complemented concavity, i.e., whether

$$
\mu\left(\mathbb{R}^{n} \backslash((1-\lambda) K+\lambda L)\right) \leq\left((1-\lambda) \mu\left(\mathbb{R}^{n} \backslash K\right)^{q}+\lambda \mu\left(\mathbb{R}^{n} \backslash L\right)^{q}\right)^{1 / q}
$$

$\forall \lambda \in(0,1)$ and all Borel sets $K, L \subset \mathbb{R}^{n}$ s.t. $\mu\left(\mathbb{R}^{n} \backslash K\right), \mu\left(\mathbb{R}^{n} \backslash L\right)<\infty$.
When (μ is finite and) $q=1$ both relations above are trivially equivalent, but this equivalence is no longer true in general for other values of q.

Complemented Brunn-Minkowski inequalities

Given a q-concave measure on \mathbb{R}^{n}, namely, a measure satisfying

$$
\mu((1-\lambda) K+\lambda L) \geq\left((1-\lambda) \mu(K)^{q}+\lambda \mu(L)^{q}\right)^{1 / q}
$$

$\forall \lambda \in(0,1)$ and all Borel sets $K, L \subset \mathbb{R}^{n}$ with $\mu(K) \mu(L)>0$, it is natural to wonder about a q-complemented concavity, i.e., whether

$$
\mu\left(\mathbb{R}^{n} \backslash((1-\lambda) K+\lambda L)\right) \leq\left((1-\lambda) \mu\left(\mathbb{R}^{n} \backslash K\right)^{q}+\lambda \mu\left(\mathbb{R}^{n} \backslash L\right)^{q}\right)^{1 / q}
$$

$\forall \lambda \in(0,1)$ and all Borel sets $K, L \subset \mathbb{R}^{n}$ s.t. $\mu\left(\mathbb{R}^{n} \backslash K\right), \mu\left(\mathbb{R}^{n} \backslash L\right)<\infty$.
When (μ is finite and) $q=1$ both relations above are trivially equivalent, but this equivalence is no longer true in general for other values of q.

Furthermore, it is not even clear that there are non-trivial examples of q-complemented concave measures.

Complemented Brunn-Minkowski inequalities

Given a q-concave measure on \mathbb{R}^{n}, namely, a measure satisfying

$$
\mu((1-\lambda) K+\lambda L) \geq\left((1-\lambda) \mu(K)^{q}+\lambda \mu(L)^{q}\right)^{1 / q}
$$

$\forall \lambda \in(0,1)$ and all Borel sets $K, L \subset \mathbb{R}^{n}$ with $\mu(K) \mu(L)>0$, it is natural to wonder about a q-complemented concavity, i.e., whether

$$
\mu\left(\mathbb{R}^{n} \backslash((1-\lambda) K+\lambda L)\right) \leq\left((1-\lambda) \mu\left(\mathbb{R}^{n} \backslash K\right)^{q}+\lambda \mu\left(\mathbb{R}^{n} \backslash L\right)^{q}\right)^{1 / q}
$$

$\forall \lambda \in(0,1)$ and all Borel sets $K, L \subset \mathbb{R}^{n}$ s.t. $\mu\left(\mathbb{R}^{n} \backslash K\right), \mu\left(\mathbb{R}^{n} \backslash L\right)<\infty$.
When (μ is finite and) $q=1$ both relations above are trivially equivalent, but this equivalence is no longer true in general for other values of q.

Furthermore, it is not even clear that there are non-trivial examples of q-complemented concave measures.

This problem was initiated and studied by E. Milman and L. Rotem in 2014, and they obtained various interesting properties on the class of q-complemented measures

Complemented Brunn-Minkowski inequalities

Given a q-concave measure on \mathbb{R}^{n}, namely, a measure satisfying

$$
\mu((1-\lambda) K+\lambda L) \geq\left((1-\lambda) \mu(K)^{q}+\lambda \mu(L)^{q}\right)^{1 / q}
$$

$\forall \lambda \in(0,1)$ and all Borel sets $K, L \subset \mathbb{R}^{n}$ with $\mu(K) \mu(L)>0$, it is natural to wonder about a q-complemented concavity, i.e., whether

$$
\mu\left(\mathbb{R}^{n} \backslash((1-\lambda) K+\lambda L)\right) \leq\left((1-\lambda) \mu\left(\mathbb{R}^{n} \backslash K\right)^{q}+\lambda \mu\left(\mathbb{R}^{n} \backslash L\right)^{q}\right)^{1 / q}
$$

$\forall \lambda \in(0,1)$ and all Borel sets $K, L \subset \mathbb{R}^{n}$ s.t. $\mu\left(\mathbb{R}^{n} \backslash K\right), \mu\left(\mathbb{R}^{n} \backslash L\right)<\infty$.
When (μ is finite and) $q=1$ both relations above are trivially equivalent, but this equivalence is no longer true in general for other values of q.

Furthermore, it is not even clear that there are non-trivial examples of q-complemented concave measures.

This problem was initiated and studied by E. Milman and L. Rotem in 2014, and they obtained various interesting properties on the class of q-complemented measures and that these inequalities hold for measures associated to p-homogeneous densities.

Complemented Brunn-Minkowski inequalities

Theorem (Schneider (2018))

Let $C \subset \mathbb{R}^{n}$ be a closed convex cone with interior points, let $A, B \subset C$ be closed convex sets s.t. $0<\operatorname{vol}(C \backslash A), \operatorname{vol}(C \backslash B)<\infty$, and let $\lambda \in(0,1)$.

Complemented Brunn-Minkowski inequalities

Theorem (Schneider (2018))

Let $C \subset \mathbb{R}^{n}$ be a closed convex cone with interior points, let $A, B \subset C$ be closed convex sets s.t. $0<\operatorname{vol}(C \backslash A), \operatorname{vol}(C \backslash B)<\infty$, and let $\lambda \in(0,1)$. Then

$$
\operatorname{vol}(C \backslash((1-\lambda) A+\lambda B))^{1 / n} \leq(1-\lambda) \operatorname{vol}(C \backslash A)^{1 / n}+\lambda \operatorname{vol}(C \backslash B)^{1 / n}
$$

Equality holds if and only if $A=\alpha B$ with some $\alpha>0$.

Complemented Brunn-Minkowski inequalities

Theorem (Schneider (2018))

Let $C \subset \mathbb{R}^{n}$ be a closed convex cone with interior points, let $A, B \subset C$ be closed convex sets s.t. $0<\operatorname{vol}(C \backslash A), \operatorname{vol}(C \backslash B)<\infty$, and let $\lambda \in(0,1)$. Then

$$
\operatorname{vol}(C \backslash((1-\lambda) A+\lambda B))^{1 / n} \leq(1-\lambda) \operatorname{vol}(C \backslash A)^{1 / n}+\lambda \operatorname{vol}(C \backslash B)^{1 / n}
$$

Equality holds if and only if $A=\alpha B$ with some $\alpha>0$.

Schneider's proof adapts the classical Kneser-Süss approach to the Brunn-Minkowski inequality for convex bodies, but needs extra steps.

Dual vs Complemented Brunn-Minkowski inequalities

Dual Brunn-Minkowski inequality

$$
\operatorname{vol}((1-\lambda) K \widetilde{+} \lambda L)^{1 / n} \leq(1-\lambda) \operatorname{vol}(K)^{1 / n}+\lambda \operatorname{vol}(L)^{1 / n} .
$$

Dual vs Complemented Brunn-Minkowski inequalities

Dual Brunn-Minkowski inequality

$$
\operatorname{vol}((1-\lambda) K \widetilde{+} \lambda L)^{1 / n} \leq(1-\lambda) \operatorname{vol}(K)^{1 / n}+\lambda \operatorname{vol}(L)^{1 / n}
$$

Complemented Brunn-Minkowski inequality

$$
\operatorname{vol}(C \backslash((1-\lambda) A+\lambda B))^{1 / n} \leq(1-\lambda) \operatorname{vol}(C \backslash A)^{1 / n}+\lambda \operatorname{vol}(C \backslash B)^{1 / n}
$$

Dual vs Complemented Brunn-Minkowski inequalities

Given a set $A \subset \mathbb{R}^{n}$,

Dual vs Complemented Brunn-Minkowski inequalities

Given a set $A \subset \mathbb{R}^{n}$, we write

$$
A(u):=\left\{t \in \mathbb{R}_{\geq 0}: t u \in A\right\}
$$

for any $u \in \mathbb{S}^{n-1}$.

Dual vs Complemented Brunn-Minkowski inequalities

Given a set $A \subset \mathbb{R}^{n}$, we write

$$
A(u):=\left\{t \in \mathbb{R}_{\geq 0}: t u \in A\right\}
$$

for any $u \in \mathbb{S}^{n-1}$.

Dual vs Complemented Brunn-Minkowski inequalities

Given a set $A \subset \mathbb{R}^{n}$, we write

$$
A(u):=\left\{t \in \mathbb{R}_{\geq 0}: t u \in A\right\}
$$

for any $u \in \mathbb{S}^{n-1}$.

Dual vs Complemented Brunn-Minkowski inequalities

Given a set $A \subset \mathbb{R}^{n}$, we write

$$
A(u):=\left\{t \in \mathbb{R}_{\geq 0}: t u \in A\right\}
$$

for any $u \in \mathbb{S}^{n-1}$.

Moreover, for any $A, B \subset \mathbb{R}^{n}$, we define

$$
(A \widetilde{+} B)(u):= \begin{cases}A(u)+B(u) & \text { if both } A(u), B(u) \text { are non-empty }, \\ \emptyset & \text { otherwise. }\end{cases}
$$

Dual vs Complemented Brunn-Minkowski inequalities

Now, we then extend the radial sum $\widetilde{+}$ to arbitrary sets as follows:

$$
A \widetilde{+} B:=\bigcup_{u \in \mathbb{S}^{n}-1}[(A \widetilde{+} B)(u)] \cdot u
$$

Dual vs Complemented Brunn-Minkowski inequalities

Now, we then extend the radial sum $\widetilde{+}$ to arbitrary sets as follows:

$$
A \widetilde{+} B:=\bigcup_{u \in \mathbb{S}^{n-1}}[(A \widetilde{+} B)(u)] \cdot u
$$

Notice that, indeed, when A and B are star bodies then both definitions for $\widetilde{+}$ coincide.

Dual vs Complemented Brunn-Minkowski inequalities

Now, we then extend the radial sum $\widetilde{+}$ to arbitrary sets as follows:

$$
A \widetilde{+} B:=\bigcup_{u \in \mathbb{S}^{n-1}}[(A \widetilde{+} B)(u)] \cdot u
$$

Notice that, indeed, when A and B are star bodies then both definitions for $\widetilde{+}$ coincide. Moreover, we clearly have

$$
A \widetilde{+} B \subset A+B
$$

for any non-empty sets $A, B \subset \mathbb{R}^{n}$.

Dual vs Complemented Brunn-Minkowski inequalities

Now, we then extend the radial sum $\widetilde{+}$ to arbitrary sets as follows:

$$
A \widetilde{+} B:=\bigcup_{u \in \mathbb{S}^{n}-1}[(A \widetilde{+} B)(u)] \cdot u
$$

Notice that, indeed, when A and B are star bodies then both definitions for $\widetilde{+}$ coincide. Moreover, we clearly have

$$
A \widetilde{+} B \subset A+B
$$

for any non-empty sets $A, B \subset \mathbb{R}^{n}$.
Note also that, given a closed convex cone C with interior points, if $A, B \subset C$ are convex then

$$
C \backslash(A \widetilde{+} B)=(C \backslash A) \widetilde{+}(C \backslash B)
$$

Dual vs Complemented Brunn-Minkowski inequalities

Theorem (Y.N., Zvavitch (2023+))

Let $C \subset \mathbb{R}^{n}$ be a closed convex cone with interior points, let $A, B \subset C$ be Borel sets s.t. $0<\operatorname{vol}(C \backslash A), \operatorname{vol}(C \backslash B)<\infty$, and let $\lambda \in(0,1)$.

Dual vs Complemented Brunn-Minkowski inequalities

Theorem (Y.N., Zvavitch (2023+))

Let $C \subset \mathbb{R}^{n}$ be a closed convex cone with interior points, let $A, B \subset C$ be Borel sets s.t. $0<\operatorname{vol}(C \backslash A), \operatorname{vol}(C \backslash B)<\infty$, and let $\lambda \in(0,1)$. Then

$$
\operatorname{vol}(C \backslash((1-\lambda) A \tilde{+} \lambda B))^{1 / n} \leq(1-\lambda) \operatorname{vol}(C \backslash A)^{1 / n}+\lambda \operatorname{vol}(C \backslash B)^{1 / n}
$$

Dual vs Complemented Brunn-Minkowski inequalities

Theorem (Y.N., Zvavitch (2023+))

Let $C \subset \mathbb{R}^{n}$ be a closed convex cone with interior points, let $A, B \subset C$ be Borel sets s.t. $0<\operatorname{vol}(C \backslash A), \operatorname{vol}(C \backslash B)<\infty$, and let $\lambda \in(0,1)$. Then

$$
\operatorname{vol}(C \backslash((1-\lambda) A \tilde{+} \lambda B))^{1 / n} \leq(1-\lambda) \operatorname{vol}(C \backslash A)^{1 / n}+\lambda \operatorname{vol}(C \backslash B)^{1 / n}
$$

This connects both the dual and the complemented Brunn-Minkowski inequalities.

Dual vs Complemented Brunn-Minkowski inequalities

Theorem (Y.N., Zvavitch (2023+))

Let $C \subset \mathbb{R}^{n}$ be a closed convex cone with interior points, let $A, B \subset C$ be Borel sets s.t. $0<\operatorname{vol}(C \backslash A), \operatorname{vol}(C \backslash B)<\infty$, and let $\lambda \in(0,1)$. Then

$$
\operatorname{vol}(C \backslash((1-\lambda) A \tilde{+} \lambda B))^{1 / n} \leq(1-\lambda) \operatorname{vol}(C \backslash A)^{1 / n}+\lambda \operatorname{vol}(C \backslash B)^{1 / n}
$$

This connects both the dual and the complemented Brunn-Minkowski inequalities.
Under the additional assumption of convexity for A and B, we can easily derive the following result, from which one obtains Schneider's theorem on coconvex sets.

Dual vs Complemented Brunn-Minkowski inequalities

Theorem (Y.N., Zvavitch (2023+))

Let $C \subset \mathbb{R}^{n}$ be a closed convex cone with interior points, let $A, B \subset C$ be Borel sets s.t. $0<\operatorname{vol}(C \backslash A), \operatorname{vol}(C \backslash B)<\infty$, and let $\lambda \in(0,1)$. Then

$$
\operatorname{vol}(C \backslash((1-\lambda) A \widetilde{+} \lambda B))^{1 / n} \leq(1-\lambda) \operatorname{vol}(C \backslash A)^{1 / n}+\lambda \operatorname{vol}(C \backslash B)^{1 / n}
$$

This connects both the dual and the complemented Brunn-Minkowski inequalities.
Under the additional assumption of convexity for A and B, we can easily derive the following result, from which one obtains Schneider's theorem on coconvex sets.

Theorem (Y.N., Zvavitch (2023+))

Let $C \subset \mathbb{R}^{n}$ be a closed convex cone with interior points, let $A, B \subset C$ be closed convex sets sets s.t. $0<\operatorname{vol}(C \backslash A), \operatorname{vol}(C \backslash B)<\infty$, and let $\lambda \in(0,1)$. Then

$$
\operatorname{vol}(C \backslash((1-\lambda) A \tilde{+} \lambda B))^{1 / n} \leq(1-\lambda) \operatorname{vol}(C \backslash A)^{1 / n}+\lambda \operatorname{vol}(C \backslash B)^{1 / n}
$$

Equality holds if and only if $A=\alpha B$ with some $\alpha>0$.

Proof (complemented dual B-M for coconvex sets)

From

$$
C \backslash(A \widetilde{+} B)=(C \backslash A) \widetilde{+}(C \backslash B)
$$

we clearly have that

$$
C \backslash((1-\lambda) A \widetilde{+} \lambda B)=(C \backslash((1-\lambda) A)) \widetilde{+}(C \backslash(\lambda B))
$$

Proof (complemented dual B-M for coconvex sets)

From

$$
C \backslash(A \widetilde{+} B)=(C \backslash A) \widetilde{+}(C \backslash B)
$$

we clearly have that

$$
\begin{aligned}
C \backslash((1-\lambda) A \widetilde{+} \lambda B) & =(C \backslash((1-\lambda) A)) \tilde{+}(C \backslash(\lambda B)) \\
& =(1-\lambda)(C \backslash A) \widetilde{+} \lambda(C \backslash B),
\end{aligned}
$$

where the last equality follows from the fact that C is a cone.

Proof (complemented dual B-M for coconvex sets)

From

$$
C \backslash(A \tilde{+} B)=(C \backslash A) \tilde{+}(C \backslash B)
$$

we clearly have that

$$
\begin{aligned}
C \backslash((1-\lambda) A \tilde{+} \lambda B) & =(C \backslash((1-\lambda) A)) \tilde{+}(C \backslash(\lambda B)) \\
& =(1-\lambda)(C \backslash A) \tilde{+} \lambda(C \backslash B),
\end{aligned}
$$

where the last equality follows from the fact that C is a cone. Now, taking volumes and applying the dual Brunn-Minkowski inequality we obtain the desired inequality.

Proof (complemented dual B-M for coconvex sets)

From

$$
C \backslash(A \widetilde{+} B)=(C \backslash A) \widetilde{+}(C \backslash B)
$$

we clearly have that

$$
\begin{aligned}
C \backslash((1-\lambda) A \tilde{+} \lambda B) & =(C \backslash((1-\lambda) A)) \tilde{+}(C \backslash(\lambda B)) \\
& =(1-\lambda)(C \backslash A) \tilde{+} \lambda(C \backslash B),
\end{aligned}
$$

where the last equality follows from the fact that C is a cone. Now, taking volumes and applying the dual Brunn-Minkowski inequality we obtain the desired inequality.

If equality holds then we have equality in the dual Brunn-Minkowski inequality for the sets $K=C \backslash A$ and $L=C \backslash B$,

Proof (complemented dual B-M for coconvex sets)

From

$$
C \backslash(A \widetilde{+} B)=(C \backslash A) \widetilde{+}(C \backslash B)
$$

we clearly have that

$$
\begin{aligned}
C \backslash((1-\lambda) A \tilde{+} \lambda B) & =(C \backslash((1-\lambda) A)) \tilde{+}(C \backslash(\lambda B)) \\
& =(1-\lambda)(C \backslash A) \tilde{+} \lambda(C \backslash B)
\end{aligned}
$$

where the last equality follows from the fact that C is a cone. Now, taking volumes and applying the dual Brunn-Minkowski inequality we obtain the desired inequality.

If equality holds then we have equality in the dual Brunn-Minkowski inequality for the sets $K=C \backslash A$ and $L=C \backslash B$, and thus $C \backslash A=\alpha(C \backslash B)$ for some $\alpha>0$, which is equivalent to the identity $A=\alpha B$.

Complemented Gaussian Brunn-Minkowski inequalities

When considering the Gaussian measure $\gamma_{n}(\cdot)$, the (in some sense) 'real concavity' that one naturally has is provided by the well-known Ehrhard inequality:

Ehrhard's inequality

Let $A, B \subset \mathbb{R}^{n}$ be Borel sets. Then

$$
\Phi^{-1}\left[\gamma_{n}((1-\lambda) A+\lambda B)\right] \geq(1-\lambda) \Phi^{-1}\left[\gamma_{n}(A)\right]+\lambda \Phi^{-1}\left[\gamma_{n}(B)\right] .
$$

Complemented Gaussian Brunn-Minkowski inequalities

When considering the Gaussian measure $\gamma_{n}(\cdot)$, the (in some sense) 'real concavity' that one naturally has is provided by the well-known Ehrhard inequality:

Ehrhard's inequality

Let $A, B \subset \mathbb{R}^{n}$ be Borel sets. Then

$$
\Phi^{-1}\left[\gamma_{n}((1-\lambda) A+\lambda B)\right] \geq(1-\lambda) \Phi^{-1}\left[\gamma_{n}(A)\right]+\lambda \Phi^{-1}\left[\gamma_{n}(B)\right] .
$$

$$
\Phi(x)=\gamma_{1}((-\infty, x]) \text { for all } x \in \mathbb{R}
$$

Complemented Gaussian Brunn-Minkowski inequalities

When considering the Gaussian measure $\gamma_{n}(\cdot)$, the (in some sense) 'real concavity' that one naturally has is provided by the well-known Ehrhard inequality:

Ehrhard's inequality

Let $A, B \subset \mathbb{R}^{n}$ be Borel sets. Then

$$
\Phi^{-1}\left[\gamma_{n}((1-\lambda) A+\lambda B)\right] \geq(1-\lambda) \Phi^{-1}\left[\gamma_{n}(A)\right]+\lambda \Phi^{-1}\left[\gamma_{n}(B)\right] .
$$

$$
\Phi(x)=\gamma_{1}((-\infty, x]) \text { for all } x \in \mathbb{R}
$$

Proposition (Y.N., Zvavitch (2023+))

Let $A, B \subset \mathbb{R}^{n}$ be Borel sets. Then

$$
\Phi^{-1}\left[\gamma_{n}\left(\mathbb{R}^{n} \backslash((1-\lambda) A+\lambda B)\right)\right] \leq(1-\lambda) \Phi^{-1}\left[\gamma_{n}\left(\mathbb{R}^{n} \backslash A\right)\right]+\lambda \Phi^{-1}\left[\gamma_{n}\left(\mathbb{R}^{n} \backslash B\right)\right]
$$

Complemented Gaussian Brunn-Minkowski inequalities

Does a complemented Brunn-Minkowski inequality

$$
\gamma_{n}\left(\mathbb{R}^{n} \backslash((1-\lambda) A+\lambda B)\right)^{1 / n} \leq(1-\lambda) \gamma_{n}\left(\mathbb{R}^{n} \backslash A\right)^{1 / n}+\lambda \gamma_{n}\left(\mathbb{R}^{n} \backslash B\right)^{1 / n}
$$

holds for the Gaussian measure?

Complemented Gaussian Brunn-Minkowski inequalities

Does a complemented Brunn-Minkowski inequality

$$
\gamma_{n}\left(\mathbb{R}^{n} \backslash((1-\lambda) A+\lambda B)\right)^{1 / n} \leq(1-\lambda) \gamma_{n}\left(\mathbb{R}^{n} \backslash A\right)^{1 / n}+\lambda \gamma_{n}\left(\mathbb{R}^{n} \backslash B\right)^{1 / n}
$$

holds for the Gaussian measure? NO!

Complemented Gaussian Brunn-Minkowski inequalities

Does a complemented Brunn-Minkowski inequality

$$
\gamma_{n}\left(\mathbb{R}^{n} \backslash((1-\lambda) A+\lambda B)\right)^{1 / n} \leq(1-\lambda) \gamma_{n}\left(\mathbb{R}^{n} \backslash A\right)^{1 / n}+\lambda \gamma_{n}\left(\mathbb{R}^{n} \backslash B\right)^{1 / n}
$$

holds for the Gaussian measure? NO! \rightsquigarrow Take $n=2$, and A and B dilates of the Euclidean unit ball B_{2}.

Complemented Gaussian Brunn-Minkowski inequalities

Does a complemented Brunn-Minkowski inequality

$$
\gamma_{n}\left(\mathbb{R}^{n} \backslash((1-\lambda) A+\lambda B)\right)^{1 / n} \leq(1-\lambda) \gamma_{n}\left(\mathbb{R}^{n} \backslash A\right)^{1 / n}+\lambda \gamma_{n}\left(\mathbb{R}^{n} \backslash B\right)^{1 / n}
$$

holds for the Gaussian measure? NO! \rightsquigarrow Take $n=2$, and A and B dilates of the Euclidean unit ball B_{2}.

Theorem (Gardner, Zvavitch (2010))

Let $K, L \subset \mathbb{R}^{n}$ be Borel star sets. Then

$$
\gamma_{n}(K \widetilde{+} L)^{1 / n} \leq \gamma_{n}(K)^{1 / n}+\gamma_{n}(L)^{1 / n} .
$$

Complemented Gaussian Brunn-Minkowski inequalities

Does a complemented Brunn-Minkowski inequality

$$
\gamma_{n}\left(\mathbb{R}^{n} \backslash((1-\lambda) A+\lambda B)\right)^{1 / n} \leq(1-\lambda) \gamma_{n}\left(\mathbb{R}^{n} \backslash A\right)^{1 / n}+\lambda \gamma_{n}\left(\mathbb{R}^{n} \backslash B\right)^{1 / n}
$$

holds for the Gaussian measure? NO! \rightsquigarrow Take $n=2$, and A and B dilates of the Euclidean unit ball B_{2}.

Theorem (Gardner, Zvavitch (2010))

Let $K, L \subset \mathbb{R}^{n}$ be Borel star sets. Then

$$
\gamma_{n}(K \widetilde{+} L)^{1 / n} \leq \gamma_{n}(K)^{1 / n}+\gamma_{n}(L)^{1 / n} .
$$

By using the above extension of the radial sum, we showed the following:

Theorem (Y.N., Zvavitch (2023+))

Let $C \subset \mathbb{R}^{n}$ be a closed convex cone with interior points and let $A, B \subset C$ be Borel sets. Then

$$
\gamma_{n}(C \backslash(A \widetilde{+} B))^{1 / n} \leq \gamma_{n}(C \backslash A)^{1 / n}+\gamma_{n}(C \backslash B)^{1 / n}
$$

Complemented Gaussian Brunn-Minkowski inequalities

Does a complemented Brunn-Minkowski inequality

$$
\gamma_{n}\left(\mathbb{R}^{n} \backslash((1-\lambda) A+\lambda B)\right)^{1 / n} \leq(1-\lambda) \gamma_{n}\left(\mathbb{R}^{n} \backslash A\right)^{1 / n}+\lambda \gamma_{n}\left(\mathbb{R}^{n} \backslash B\right)^{1 / n}
$$

holds for the Gaussian measure? NO! \rightsquigarrow Take $n=2$, and A and B dilates of the Euclidean unit ball B_{2}.

Theorem (Gardner, Zvavitch (2010))

Let $K, L \subset \mathbb{R}^{n}$ be Borel star sets. Then

$$
\gamma_{n}(K \widetilde{+} L)^{1 / n} \leq \gamma_{n}(K)^{1 / n}+\gamma_{n}(L)^{1 / n} .
$$

By using the above extension of the radial sum, we showed the following:

Theorem (Y.N., Zvavitch (2023+))

Let $C \subset \mathbb{R}^{n}$ be a closed convex cone with interior points and let $A, B \subset C$ be Borel sets. Then

$$
\gamma_{n}(C \backslash(A \widetilde{+} B))^{1 / n} \leq \gamma_{n}(C \backslash A)^{1 / n}+\gamma_{n}(C \backslash B)^{1 / n} .
$$

This result recovers (as before in the case of the volume) the previously known Gaussian dual Brunn-Minkowski inequality.

On complemented Brunn-Minkowski type inequalities

J. Yepes Nicolás

Universidad de Murcia
(joint work with A. Zvavitch)

INdAM Meeting

CONVEX GEOMETRY - ANALYTIC ASPECTS

Cortona
June 27th, 2023

