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Notation

Consider Rn with the standard inner product ⟨x, y⟩ =
∑n

i=1 xiyi and
let |x| =

√
⟨x, x⟩.

Let Sn−1 = {x ∈ Rn : |x| = 1}
We write e1, e2, . . . , en for the standard basis vectors.

For a ∈ Sn−1 we define the hyperplane perpendicular to a

a⊥ = {x ∈ Rn : ⟨x, a⟩ = 0}.

voli stands for a Lebesgue measure on an appropriate subspace of
dimension i.
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Extremal sections of the cube

Let Qn =
[
−1

2 ,
1
2

]n
be the cube in Rn.

Theorem (Ball)

For any a ∈ Sn−1 we have that

1 ≤ voln−1(Qn ∩ a⊥) ≤
√
2

The lower bound was shown earlier independently by Hadwiger (’72)
and Hensley (’79), uniquely attained at

a = ±ei

for any i = 1, . . . , n.

The upper bound due to Ball (’86), uniquely attained at

a = ei ± ej

for any i ̸= j.

Kasia Wyczesany 29 June 2023 Cortona, Italy



Extremal sections of the cube

Let Qn =
[
−1

2 ,
1
2

]n
be the cube in Rn.

Theorem (Ball)

For any a ∈ Sn−1 we have that

1 ≤ voln−1(Qn ∩ a⊥) ≤
√
2

The lower bound was shown earlier independently by Hadwiger (’72)
and Hensley (’79), uniquely attained at

a = ±ei

for any i = 1, . . . , n.

The upper bound due to Ball (’86), uniquely attained at

a = ei ± ej

for any i ̸= j.

Kasia Wyczesany 29 June 2023 Cortona, Italy



Extremal sections of the cube

Let Qn =
[
−1

2 ,
1
2

]n
be the cube in Rn.

Theorem (Ball)

For any a ∈ Sn−1 we have that

1 ≤ voln−1(Qn ∩ a⊥) ≤
√
2

The lower bound was shown earlier independently by Hadwiger (’72)
and Hensley (’79), uniquely attained at

a = ±ei

for any i = 1, . . . , n.

The upper bound due to Ball (’86), uniquely attained at

a = ei ± ej

for any i ̸= j.

Kasia Wyczesany 29 June 2023 Cortona, Italy



Stability of cube slicing

Theorem (Chasapis, Nayar, Tkocz)

For every unit vector a in Rn with a1 ≥ a2 ≥ · · · ≥ an ≥ 0, we have

1 +
1

54
|a− e1|2 ≤ voln−1(Qn ∩ a⊥) ≤

√
2− 6 · 10−5

∣∣∣∣a− e1 + e2√
2

∣∣∣∣

The above formulation is due to Chasapis, Nayar and Tkocz (’22)
(constant in the upper bound is due to Eskenazis, Nayar and Tkocz)

A local version was established by Melbourne and Roberto (’22)
(with applications to information theory)
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The complex analogue

For z, w ∈ Cn, we let as usual ⟨z, w⟩ =
∑n

j=1 zjw̄j be their standard

inner product, and let |z| =
√
⟨z, z̄⟩.

Let D be the unit disc in the complex plane and let

Dn = D× · · · × D = {z ∈ Cn : max
1≤j≤n

|zj | ≤ 1}

be the polydisc in Cn.

In this setting, we identify Cn with R2n via the standard embedding.

Note that here for a ∈ C, the subspace a⊥, as a subspace of R2n, is

of real dimension 2n− 2.

Note that vol2n−2(Dn−1) = πn−1

(obtained as the canonical section Dn ∩ (1, 0, . . . , 0)⊥).
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Extremal section of the polydisc

A counterpart of Ball’s cube slicing in Cn was developed by Oleszkiewicz
and Pe lczyński (’00):

Theorem (Oleszkiewicz, Pe lczyński)

For every (complex) hyperplane a⊥ = {z ∈ Cn : ⟨z, a⟩ = 0} orthogonal to
the vector a in Cn, we have

1 ≤ 1

πn−1
vol2n−2(Dn ∩ a⊥) ≤ 2.
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the vector a in Cn, we have

1 ≤ 1

πn−1
vol2n−2(Dn ∩ a⊥) ≤ 2.

The lower bound is attained uniquely at hyperplanes orthogonal to
the “standard basis vectors”

ξej , 1 ≤ j ≤ n, and ξ ∈ C s.th |ξ| = 1.

the upper one is attained uniquely at hyperplanes orthogonal to the
vectors

ej + ξek, 1 ≤ j < k ≤ n, and ξ ∈ C s.th |ξ| = 1.
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Extremal section of the polydisc

A counterpart of Ball’s cube slicing in Cn was developed by Oleszkiewicz
and Pe lczyński (’00):

Theorem (Oleszkiewicz, Pe lczyński)

For every (complex) hyperplane a⊥ = {z ∈ Cn : ⟨z, a⟩ = 0} orthogonal to
the vector a in Cn, we have

1 ≤ 1

πn−1
vol2n−2(Dn ∩ a⊥) ≤ 2.

Thanks to the symmetries of Dn under the permutations of the
coordinates as well as complex rotations along axes

z 7→ (eit1z1, . . . , e
itnzn),

it suffices to consider real nonnegative vectors with nonincreasing
components.

Kasia Wyczesany 29 June 2023 Cortona, Italy



Stability of polydisc slicing

Theorem (Glover, Tkocz, W.)

For n ≥ 2 and every unit vector a in Rn with a1 ≥ a2 ≥ · · · ≥ an ≥ 0, we
have

1

πn−1
vol2n−2(Dn ∩ a⊥) ≤ 2−min

10−40

∣∣∣∣a− e1 + e2√
2

∣∣∣∣ , 1

76

n∑
j=1

a4j

 .
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The upper bound is the minimum over two quantities: the distance to the
unique extremiser and the ℓ4 norm of a. The latter appears to account for
the fact that

lim
n→∞

1

πn−1
vol2n−2

(
Dn ∩

(
1√
n
, . . . , 1√

n

)⊥)
= 2.

In other words, polidysc slicing admits an additional asymptotic (Gaussian)
extremiser.
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10−40

∣∣∣∣a− e1 + e2√
2

∣∣∣∣ , 1

76

n∑
j=1

a4j

 .

In the real case,

lim
n→∞

voln−1

([
−1

2 ,
1
2

]n ∩
(

1√
n
, . . . , 1√

n

)⊥)
=

√
6

π
<

√
2.
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∣∣∣∣ , 1

76
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A stability for the lower-bound can be easily extracted from previous works
of Chasapis, Nayar, Tkocz:

1

πn−1
vol2n−2(Dn ∩ a⊥) ≥ 1 +

1

4
|a− e1|2.
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Sketch of the proof

a1

a2

√
3
8

1√
2

1√
2
+ 6 · 10−41

1
6 · 10−5

1√
2

1−10−4
√
2

I

III

IV.b

IV.a IIV
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For convenience, we consider the normalised section function

An(a) =
1

πn−1
vol2n−2(Dn ∩ a⊥), a ∈ Rn

so that An(e1) =
1

πn−1vol2n−2(Dn−1) = 1.

Our approach, to a large extent, relies on the following probabilistic
formula for the volume of sections of the polydisc:

Lemma (Brzezinski (’13))

For every n ≥ 1 and every unit vector a in Rn, we have

An(a) = E

∣∣∣∣∣
n∑

k=1

akξk

∣∣∣∣∣
−2

,

where ξ1, ξ2, . . . are independent random vectors uniform on the unit

sphere S3 in R4.
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Sketch of the proof: I

a1

a2

√
3
8

1√
2

1√
2
+ 6 · 10−41

1
6 · 10−5

1√
2

1−10−4
√
2

I

III

IV.b

IV.a IIV

Kasia Wyczesany 29 June 2023 Cortona, Italy



Sketch of the proof: I

We set

δ(a) =

∣∣∣∣a− e1 + e2√
2

∣∣∣∣2 = 2−
√
2(a1 + a2)

We reapply polydisc slicing in a lower dimension to a portion of a, which
yields its self-improvement and gives a quantitative deficit:

Lemma

We have, An(a) ≤ 2− 1
25

√
δ(a), provided that δ(a) ≤ 2 · 10−4.
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Lemma

Let X and Y be independent rotationally invariant random vectors in R4,

E|X + Y |−2 = Emin{|X|−2, |Y |−2}

Let X = a1ξ1 + a2ξ2 and Y =
∑n

j=3 ajξj . Then,

An(a) = Emin{|X|−2, |Y |−2} ≤ EX min{|X|−2, EY |Y |−2},

where we use the concavity of t 7→ min{α, t}.

By polydisc slicing, EY |Y |−2 ≤ 2
1−a21−a22

. Hence

An(a) ≤ Emin

{
|X|−2,

2

1− a21 − a22

}
= E|X|−2 − E

(
|X|−2 − 2

1− a21 − a22

)
+

Use again that E|X|−2 = min{a−2
1 , a−2

2 } = a−2
1 .
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Sketch of the proof: II
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1√
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√
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IV.b

IV.a IIV
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Sketch of the proof: II

Lemma

We have, An(a) ≤ 2− 12
√
2 · 10−41, provided that a1 ≥ 1√

2
+ 6 · 10−41.

Recall that

An(a) = E

∣∣∣∣∣
n∑

k=1

akξk

∣∣∣∣∣
−2

.

Let X = a1ξ1 and Y =
∑n

i=2 aiξi.
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1 ≤ 2(1− 6

√
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Sketch of the proof: III
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Sketch of the proof: III

We employ Fourier-analytic bounds and quantitative versions of the
Oleszkiewicz-Pe lczyński integral inequality for the Bessel function:

For every n ≥ 1 and every unit vector a in Rn, we have

An(a) ≤ 2
n∏

k=1

Ψ(a−2
k )a

2
k ,

where for s > 0, we define Ψ(s) = s
4

∫∞
0

∣∣∣2J1(t)t

∣∣∣s tdt
where J1(t) =

t
2

∑∞
k=0

(−1)k

22kk!(k+1)!
t2k is the Bessel function of order 1.

Lemma. For the function Ψ defined above, we have

Ψ(s) ≤

{
1− 1

12(s− 2)2, 2 ≤ s ≤ 8
3 ,

1− 1
151s , s > 8

3 .
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Sketch of the proof: III

Lemma

We have that An(a) ≤ 2 exp
{
− 1

151∥a∥
4
4

}
, provided that a1 ≤

√
3
8 .

By the assumption, a−2
k ≥ 8

3 for all k, thus

An(a) ≤ 2

n∏
k=1

Ψ(a−2
k )a

2
k

≤ 2

n∏
k=1

(
1− 1

151a
2
k

)a2k
≤ 2 exp

{
− 1

151

n∑
k=1

a4k

}
.
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Sketch of the proof: IV
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Sketch of the proof: IV.a

Lemma

An(a) ≤ 2− 10−19, if
√

3
8 ≤ a1 ≤ 1√

2
and 6 · 10−5 ≤ a2 ≤ 1−10−5

√
2

.

Recall that:

An(a) ≤ 2
n∏

k=1

Ψ(a−2
k )a

2
k ,

Oleszkiewicz and Pe lczyński’s approach crucially relies on the fact that

sup
s≥2

Ψ(s) = 1.

Hence, Ψ(a−2
k ) ≤ 1 for each k, since a−2

k ≥ 2 for each k. Using this (for
all k except k = 2)

An(a) ≤ 2
n∏

k=1

Ψ(a−2
k )a

2
k ≤ 2Ψ(a−2

2 )a
2
2
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k )a

2
k ≤ 2Ψ(a−2

2 )a
2
2
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Sketch of the proof: IV.a
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8 ≤ a1 ≤ 1√
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Sketch of the proof: IV.b

a1

a2

√
3
8

1√
2

1√
2
+ 6 · 10−41

1
6 · 10−5

1√
2

1−10−4
√
2

I

III

IV.b

IV.a IIV
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Sketch of the proof: IV.b

When a1 ≈ 1√
2

but a2, . . . , an are small, we will employ a Berry-Esseen

type bound with an explicit constant for random vectors in R4.

Raič (’19) has obtained such a result for an arbitrary dimension.

Theorem (Raič)

Let X1, . . . , Xn be independent mean 0 random vectors in Rd such that∑n
j=1Xj has the identity covariance matrix. Let G be a standard

Gaussian random vector in Rd. Then

sup
A

∣∣∣∣∣∣P(
n∑

j=1

Xj ∈ A
)
− P

(
G ∈ A

)∣∣∣∣∣∣ ≤ (42d1/4 + 16)
n∑

j=1

E|Xj |3,

where the supremum is over all Borel convex sets in Rd.
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Sketch of the proof: IV.b

Lemma

An(a) ≤ 2− 10−5, provided that
√

3
8 ≤ a1 ≤ 1√

2
and a2 ≤ 6 · 10−5.

Let Y =
∑n

j=2 ajξj and observe that

An(a) = E |a1ξ1 + Y |−2 = Emin
{
a−2
1 , |Y |−2

}

=

∫ a−2
1

0
P
(
|Y |−2 > t

)
dt

Since Y has covariance matrix
1−a21
4 Id, using the Berry-Esseen bound

(applied to d = 4 and Xj =
2√
1−a21

ajξj , j = 2, . . . , n).

P
(
|Y |−2 > t

)
≤ P

((√1−a21
4 |G|

)−2
> t
)
+

(42
√
2 + 16)

n∑
j=2

E

∣∣∣∣∣ 2√
1− a21

ajξj

∣∣∣∣∣
3
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Sketch of the proof: V
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Sketch of the proof: V

In perfect analogy to the real case, there is a complex analogue of the
classical Busemann’s theorem

Theorem (Koldobsky-Paouris-Zymonopoulou (’13))

Let K be a complex symmetric convex body K in Cn, that is K is a
convex body in R2n with eitz ∈ K, whenever z ∈ K, t ∈ R. Then the
function

z 7→ |z|
(vol2n−2(K ∩ z⊥))1/2

defines a norm on Cn.

Lemma

For unit vectors a, b in Rn, we have

|An(a)−An(b)| ≤ 4
√
2|a− b|.
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Sketch of the proof: V

Lemma

We have, An(a) ≤ 2− 10−20, provided that 1√
2
< a1 ≤ 1√

2
+ 6 · 10−41

and a2 ≤ 1−10−4
√
2

.

We consider the following modification of a, the vector

b =

(
1√
2
,

√
a21 + a22 −

1

2
, a3, . . . , an

)
.

Then

An(a) ≤ An(b) + 4
√
2|a− b| ≤ 2− 10−19 + 8|a− b|.
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Stability of polydisc slicing

Theorem (Glover, Tkocz, W.)

For n ≥ 2 and every unit vector a in Rn with a1 ≥ a2 ≥ · · · ≥ an ≥ 0, we
have

1

πn−1
vol2n−2(Dn ∩ a⊥) ≤ 2−min

10−40

∣∣∣∣a− e1 + e2√
2

∣∣∣∣ , 1

76

n∑
j=1

a4j

 .
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Thank you for your attention!

Kasia Wyczesany 29 June 2023 Cortona, Italy


