# Stability of polydisc slicing 

Katarzyna Wyczesany

Carnegie Mellon University

kwycz@cmu.edu
joint work with N. Glover and T. Tkocz

## Notation

- Consider $\mathbb{R}^{n}$ with the standard inner product $\langle x, y\rangle=\sum_{i=1}^{n} x_{i} y_{i}$ and let $|x|=\sqrt{\langle x, x\rangle}$.
- Let $S^{n-1}=\left\{x \in \mathbb{R}^{n}:|x|=1\right\}$
- We write $e_{1}, e_{2}, \ldots, e_{n}$ for the standard basis vectors.
- For $a \in S^{n-1}$ we define the hyperplane perpendicular to $a$

$$
a^{\perp}=\left\{x \in \mathbb{R}^{n}:\langle x, a\rangle=0\right\}
$$

- $\operatorname{vol}_{i}$ stands for a Lebesgue measure on an appropriate subspace of dimension $i$.


## Extremal sections of the cube

Let $Q_{n}=\left[-\frac{1}{2}, \frac{1}{2}\right]^{n}$ be the cube in $\mathbb{R}^{n}$.

Theorem (Ball)
For any $a \in S^{n-1}$ we have that

$$
1 \leq \operatorname{vol}_{n-1}\left(Q_{n} \cap a^{\perp}\right) \leq \sqrt{2}
$$

## Extremal sections of the cube

Let $Q_{n}=\left[-\frac{1}{2}, \frac{1}{2}\right]^{n}$ be the cube in $\mathbb{R}^{n}$.

## Theorem (Ball)

For any $a \in S^{n-1}$ we have that

$$
1 \leq \operatorname{vol}_{n-1}\left(Q_{n} \cap a^{\perp}\right) \leq \sqrt{2}
$$

- The lower bound was shown earlier independently by Hadwiger ('72) and Hensley ('79), uniquely attained at

$$
a= \pm e_{i}
$$

for any $i=1, \ldots, n$.

## Extremal sections of the cube

Let $Q_{n}=\left[-\frac{1}{2}, \frac{1}{2}\right]^{n}$ be the cube in $\mathbb{R}^{n}$.

## Theorem (Ball)

For any $a \in S^{n-1}$ we have that

$$
1 \leq \operatorname{vol}_{n-1}\left(Q_{n} \cap a^{\perp}\right) \leq \sqrt{2}
$$

- The lower bound was shown earlier independently by Hadwiger ('72) and Hensley ('79), uniquely attained at

$$
a= \pm e_{i}
$$

for any $i=1, \ldots, n$.

- The upper bound due to Ball ('86), uniquely attained at

$$
a=e_{i} \pm e_{j}
$$

for any $i \neq j$.

## Stability of cube slicing

Theorem (Chasapis, Nayar, Tkocz)
For every unit vector $a$ in $\mathbb{R}^{n}$ with $a_{1} \geq a_{2} \geq \cdots \geq a_{n} \geq 0$, we have

$$
1+\frac{1}{54}\left|a-e_{1}\right|^{2} \leq \operatorname{vol}_{n-1}\left(Q_{n} \cap a^{\perp}\right) \leq \sqrt{2}-6 \cdot 10^{-5}\left|a-\frac{e_{1}+e_{2}}{\sqrt{2}}\right|
$$

## Stability of cube slicing

Theorem (Chasapis, Nayar, Tkocz)
For every unit vector $a$ in $\mathbb{R}^{n}$ with $a_{1} \geq a_{2} \geq \cdots \geq a_{n} \geq 0$, we have

$$
1+\frac{1}{54}\left|a-e_{1}\right|^{2} \leq \operatorname{vol}_{n-1}\left(Q_{n} \cap a^{\perp}\right) \leq \sqrt{2}-6 \cdot 10^{-5}\left|a-\frac{e_{1}+e_{2}}{\sqrt{2}}\right|
$$

- The above formulation is due to Chasapis, Nayar and Tkocz ('22) (constant in the upper bound is due to Eskenazis, Nayar and Tkocz)
- A local version was established by Melbourne and Roberto ('22) (with applications to information theory)


## The complex analogue

## The complex analogue

- For $z, w \in \mathbb{C}^{n}$, we let as usual $\langle z, w\rangle=\sum_{j=1}^{n} z_{j} \bar{w}_{j}$ be their standard inner product, and let $|z|=\sqrt{\langle z, \bar{z}\rangle}$.
- Let $\mathbb{D}$ be the unit disc in the complex plane and let

$$
\mathbb{D}^{n}=\mathbb{D} \times \cdots \times \mathbb{D}=\left\{z \in \mathbb{C}^{n}: \max _{1 \leq j \leq n}\left|z_{j}\right| \leq 1\right\}
$$

be the polydisc in $\mathbb{C}^{n}$.

## The complex analogue

- For $z, w \in \mathbb{C}^{n}$, we let as usual $\langle z, w\rangle=\sum_{j=1}^{n} z_{j} \bar{w}_{j}$ be their standard inner product, and let $|z|=\sqrt{\langle z, \bar{z}\rangle}$.
- Let $\mathbb{D}$ be the unit disc in the complex plane and let

$$
\mathbb{D}^{n}=\mathbb{D} \times \cdots \times \mathbb{D}=\left\{z \in \mathbb{C}^{n}: \max _{1 \leq j \leq n}\left|z_{j}\right| \leq 1\right\}
$$

be the polydisc in $\mathbb{C}^{n}$.

- In this setting, we identify $\mathbb{C}^{n}$ with $\mathbb{R}^{2 n}$ via the standard embedding.
- Note that here for $a \in \mathbb{C}$, the subspace $a^{\perp}$, as a subspace of $\mathbb{R}^{2 n}$, is of real dimension $2 n-2$.
- Note that $\operatorname{vol}_{2 n-2}\left(\mathbb{D}^{n-1}\right)=\pi^{n-1}$
(obtained as the canonical section $\mathbb{D}^{n} \cap(1,0, \ldots, 0)^{\perp}$ ).


## Extremal section of the polydisc

A counterpart of Ball's cube slicing in $\mathbb{C}^{n}$ was developed by Oleszkiewicz and Pełczyński ('00):

Theorem (Oleszkiewicz, Pełczyński)
For every (complex) hyperplane $a^{\perp}=\left\{z \in \mathbb{C}^{n}:\langle z, a\rangle=0\right\}$ orthogonal to the vector $a$ in $\mathbb{C}^{n}$, we have

$$
1 \leq \frac{1}{\pi^{n-1}} \operatorname{vol}_{2 n-2}\left(\mathbb{D}^{n} \cap a^{\perp}\right) \leq 2
$$

## Extremal section of the polydisc

A counterpart of Ball's cube slicing in $\mathbb{C}^{n}$ was developed by Oleszkiewicz and Pełczyński ('00):

## Theorem (Oleszkiewicz, Pełczyński)

For every (complex) hyperplane $a^{\perp}=\left\{z \in \mathbb{C}^{n}:\langle z, a\rangle=0\right\}$ orthogonal to the vector $a$ in $\mathbb{C}^{n}$, we have

$$
1 \leq \frac{1}{\pi^{n-1}} \operatorname{vol}_{2 n-2}\left(\mathbb{D}^{n} \cap a^{\perp}\right) \leq 2
$$

- The lower bound is attained uniquely at hyperplanes orthogonal to the "standard basis vectors"

$$
\xi e_{j}, \quad 1 \leq j \leq n, \text { and } \xi \in \mathbb{C} \text { s.th }|\xi|=1 .
$$

- the upper one is attained uniquely at hyperplanes orthogonal to the vectors

$$
e_{j}+\xi e_{k}, \quad 1 \leq j<k \leq n, \quad \text { and } \xi \in \mathbb{C} \text { s.th } \quad|\xi|=1 .
$$

## Extremal section of the polydisc

A counterpart of Ball's cube slicing in $\mathbb{C}^{n}$ was developed by Oleszkiewicz and Pełczyński ('00):

## Theorem (Oleszkiewicz, Pełczyński)

For every (complex) hyperplane $a^{\perp}=\left\{z \in \mathbb{C}^{n}:\langle z, a\rangle=0\right\}$ orthogonal to the vector $a$ in $\mathbb{C}^{n}$, we have

$$
1 \leq \frac{1}{\pi^{n-1}} \operatorname{vol}_{2 n-2}\left(\mathbb{D}^{n} \cap a^{\perp}\right) \leq 2
$$

Thanks to the symmetries of $\mathbb{D}^{n}$ under the permutations of the coordinates as well as complex rotations along axes

$$
z \mapsto\left(e^{i t_{1}} z_{1}, \ldots, e^{i t_{n}} z_{n}\right),
$$

it suffices to consider real nonnegative vectors with nonincreasing components.

## Stability of polydisc slicing

## Theorem (Glover, Tkocz, W.)

For $n \geq 2$ and every unit vector $a$ in $\mathbb{R}^{n}$ with $a_{1} \geq a_{2} \geq \cdots \geq a_{n} \geq 0$, we have

$$
\frac{1}{\pi^{n-1}} \operatorname{vol}_{2 n-2}\left(\mathbb{D}^{n} \cap a^{\perp}\right) \leq 2-\min \left\{10^{-40}\left|a-\frac{e_{1}+e_{2}}{\sqrt{2}}\right|, \frac{1}{76} \sum_{j=1}^{n} a_{j}^{4}\right\}
$$

## Stability of polydisc slicing

## Theorem (Glover, Tkocz, W.)

For $n \geq 2$ and every unit vector $a$ in $\mathbb{R}^{n}$ with $a_{1} \geq a_{2} \geq \cdots \geq a_{n} \geq 0$, we have

$$
\frac{1}{\pi^{n-1}} \operatorname{vol}_{2 n-2}\left(\mathbb{D}^{n} \cap a^{\perp}\right) \leq 2-\min \left\{10^{-40}\left|a-\frac{e_{1}+e_{2}}{\sqrt{2}}\right|, \frac{1}{76} \sum_{j=1}^{n} a_{j}^{4}\right\} .
$$

The upper bound is the minimum over two quantities: the distance to the unique extremiser and the $\ell_{4}$ norm of $a$. The latter appears to account for the fact that

$$
\lim _{n \rightarrow \infty} \frac{1}{\pi^{n-1}} \operatorname{vol}_{2 n-2}\left(\mathbb{D}^{n} \cap\left(\frac{1}{\sqrt{n}}, \ldots, \frac{1}{\sqrt{n}}\right)^{\perp}\right)=2
$$

In other words, polidysc slicing admits an additional asymptotic (Gaussian) extremiser.

## Stability of polydisc slicing

## Theorem (Glover, Tkocz, W.)

For $n \geq 2$ and every unit vector $a$ in $\mathbb{R}^{n}$ with $a_{1} \geq a_{2} \geq \cdots \geq a_{n} \geq 0$, we have

$$
\frac{1}{\pi^{n-1}} \operatorname{vol}_{2 n-2}\left(\mathbb{D}^{n} \cap a^{\perp}\right) \leq 2-\min \left\{10^{-40}\left|a-\frac{e_{1}+e_{2}}{\sqrt{2}}\right|, \frac{1}{76} \sum_{j=1}^{n} a_{j}^{4}\right\} .
$$

In the real case,

$$
\lim _{n \rightarrow \infty} \operatorname{vol}_{n-1}\left(\left[-\frac{1}{2}, \frac{1}{2}\right]^{n} \cap\left(\frac{1}{\sqrt{n}}, \ldots, \frac{1}{\sqrt{n}}\right)^{\perp}\right)=\sqrt{\frac{6}{\pi}}<\sqrt{2}
$$

## Stability of polydisc slicing

## Theorem (Glover, Tkocz, W.)

For $n \geq 2$ and every unit vector $a$ in $\mathbb{R}^{n}$ with $a_{1} \geq a_{2} \geq \cdots \geq a_{n} \geq 0$, we have

$$
\frac{1}{\pi^{n-1}} \operatorname{vol}_{2 n-2}\left(\mathbb{D}^{n} \cap a^{\perp}\right) \leq 2-\min \left\{10^{-40}\left|a-\frac{e_{1}+e_{2}}{\sqrt{2}}\right|, \frac{1}{76} \sum_{j=1}^{n} a_{j}^{4}\right\} .
$$

A stability for the lower-bound can be easily extracted from previous works of Chasapis, Nayar, Tkocz:

$$
\frac{1}{\pi^{n-1}} \operatorname{vol}_{2 n-2}\left(\mathbb{D}^{n} \cap a^{\perp}\right) \geq 1+\frac{1}{4}\left|a-e_{1}\right|^{2} .
$$

## Sketch of the proof

## Sketch of the proof



For convenience, we consider the normalised section function

$$
A_{n}(a)=\frac{1}{\pi^{n-1}} \operatorname{vol}_{2 n-2}\left(\mathbb{D}^{n} \cap a^{\perp}\right), \quad a \in \mathbb{R}^{n}
$$

so that $A_{n}\left(e_{1}\right)=\frac{1}{\pi^{n-1}} \operatorname{vol}_{2 n-2}\left(\mathbb{D}^{n-1}\right)=1$.

For convenience, we consider the normalised section function

$$
A_{n}(a)=\frac{1}{\pi^{n-1}} \operatorname{vol}_{2 n-2}\left(\mathbb{D}^{n} \cap a^{\perp}\right), \quad a \in \mathbb{R}^{n}
$$

so that $A_{n}\left(e_{1}\right)=\frac{1}{\pi^{n-1}} \operatorname{vol}_{2 n-2}\left(\mathbb{D}^{n-1}\right)=1$.
Our approach, to a large extent, relies on the following probabilistic formula for the volume of sections of the polydisc:

Lemma (Brzezinski ('13))
For every $n \geq 1$ and every unit vector $a$ in $\mathbb{R}^{n}$, we have

$$
A_{n}(a)=\mathbb{E}\left|\sum_{k=1}^{n} a_{k} \xi_{k}\right|^{-2}
$$

where $\xi_{1}, \xi_{2}, \ldots$ are independent random vectors uniform on the unit sphere $S^{3}$ in $\mathbb{R}^{4}$.

## Sketch of the proof: I



## Sketch of the proof: I

We set

$$
\delta(a)=\left|a-\frac{e_{1}+e_{2}}{\sqrt{2}}\right|^{2}=2-\sqrt{2}\left(a_{1}+a_{2}\right)
$$

We reapply polydisc slicing in a lower dimension to a portion of $a$, which yields its self-improvement and gives a quantitative deficit:

## Lemma

We have, $A_{n}(a) \leq 2-\frac{1}{25} \sqrt{\delta(a)}$, provided that $\delta(a) \leq 2 \cdot 10^{-4}$.

## Lemma

Let $X$ and $Y$ be independent rotationally invariant random vectors in $\mathbb{R}^{4}$,

$$
\mathbb{E}|X+Y|^{-2}=\mathbb{E} \min \left\{|X|^{-2},|Y|^{-2}\right\}
$$

## Lemma

Let $X$ and $Y$ be independent rotationally invariant random vectors in $\mathbb{R}^{4}$,

$$
\mathbb{E}|X+Y|^{-2}=\mathbb{E} \min \left\{|X|^{-2},|Y|^{-2}\right\}
$$

Let $X=a_{1} \xi_{1}+a_{2} \xi_{2}$ and $Y=\sum_{j=3}^{n} a_{j} \xi_{j}$. Then,

$$
A_{n}(a)=\mathbb{E} \min \left\{|X|^{-2},|Y|^{-2}\right\} \leq \mathbb{E}_{X} \min \left\{|X|^{-2}, \mathbb{E}_{Y}|Y|^{-2}\right\}
$$

where we use the concavity of $t \mapsto \min \{\alpha, t\}$.

## Lemma

Let $X$ and $Y$ be independent rotationally invariant random vectors in $\mathbb{R}^{4}$,

$$
\mathbb{E}|X+Y|^{-2}=\mathbb{E} \min \left\{|X|^{-2},|Y|^{-2}\right\}
$$

Let $X=a_{1} \xi_{1}+a_{2} \xi_{2}$ and $Y=\sum_{j=3}^{n} a_{j} \xi_{j}$. Then,

$$
A_{n}(a)=\mathbb{E} \min \left\{|X|^{-2},|Y|^{-2}\right\} \leq \mathbb{E}_{X} \min \left\{|X|^{-2}, \mathbb{E}_{Y}|Y|^{-2}\right\}
$$

where we use the concavity of $t \mapsto \min \{\alpha, t\}$.
By polydisc slicing, $\mathbb{E}_{Y}|Y|^{-2} \leq \frac{2}{1-a_{1}^{2}-a_{2}^{2}}$. Hence

$$
\begin{aligned}
A_{n}(a) & \leq \mathbb{E} \min \left\{|X|^{-2}, \frac{2}{1-a_{1}^{2}-a_{2}^{2}}\right\} \\
& =\mathbb{E}|X|^{-2}-\mathbb{E}\left(|X|^{-2}-\frac{2}{1-a_{1}^{2}-a_{2}^{2}}\right)_{+}
\end{aligned}
$$

## Lemma

Let $X$ and $Y$ be independent rotationally invariant random vectors in $\mathbb{R}^{4}$,

$$
\mathbb{E}|X+Y|^{-2}=\mathbb{E} \min \left\{|X|^{-2},|Y|^{-2}\right\}
$$

Let $X=a_{1} \xi_{1}+a_{2} \xi_{2}$ and $Y=\sum_{j=3}^{n} a_{j} \xi_{j}$. Then,

$$
A_{n}(a)=\mathbb{E} \min \left\{|X|^{-2},|Y|^{-2}\right\} \leq \mathbb{E}_{X} \min \left\{|X|^{-2}, \mathbb{E}_{Y}|Y|^{-2}\right\}
$$

where we use the concavity of $t \mapsto \min \{\alpha, t\}$.
By polydisc slicing, $\mathbb{E}_{Y}|Y|^{-2} \leq \frac{2}{1-a_{1}^{2}-a_{2}^{2}}$. Hence

$$
\begin{aligned}
A_{n}(a) & \leq \mathbb{E} \min \left\{|X|^{-2}, \frac{2}{1-a_{1}^{2}-a_{2}^{2}}\right\} \\
& =\mathbb{E}|X|^{-2}-\mathbb{E}\left(|X|^{-2}-\frac{2}{1-a_{1}^{2}-a_{2}^{2}}\right)_{+}
\end{aligned}
$$

Use again that $\mathbb{E}|X|^{-2}=\min \left\{a_{1}^{-2}, a_{2}^{-2}\right\}=a_{1}^{-2}$.

## Sketch of the proof: II



## Sketch of the proof: II

Lemma
We have, $A_{n}(a) \leq 2-12 \sqrt{2} \cdot 10^{-41}$, provided that $a_{1} \geq \frac{1}{\sqrt{2}}+6 \cdot 10^{-41}$.

## Sketch of the proof: II

## Lemma

We have, $A_{n}(a) \leq 2-12 \sqrt{2} \cdot 10^{-41}$, provided that $a_{1} \geq \frac{1}{\sqrt{2}}+6 \cdot 10^{-41}$.

Recall that

$$
A_{n}(a)=\mathbb{E}\left|\sum_{k=1}^{n} a_{k} \xi_{k}\right|^{-2}
$$

Let $X=a_{1} \xi_{1}$ and $Y=\sum_{i=2}^{n} a_{i} \xi_{i}$.

$$
A_{n}(a)=\mathbb{E} \min \left\{|X|^{-2},|Y|^{-2}\right\} \leq a_{1}^{-2} \leq 2\left(1-6 \sqrt{2} \cdot 10^{-41}\right) .
$$

## Sketch of the proof: III



## Sketch of the proof: III

We employ Fourier-analytic bounds and quantitative versions of the Oleszkiewicz-Pełczyński integral inequality for the Bessel function:

## Sketch of the proof: III

We employ Fourier-analytic bounds and quantitative versions of the Oleszkiewicz-Pełczyński integral inequality for the Bessel function:

For every $n \geq 1$ and every unit vector $a$ in $\mathbb{R}^{n}$, we have

$$
A_{n}(a) \leq 2 \prod_{k=1}^{n} \Psi\left(a_{k}^{-2}\right)^{a_{k}^{2}}
$$

where for $s>0$, we define $\quad \Psi(s)=\frac{s}{4} \int_{0}^{\infty}\left|\frac{2 J_{1}(t)}{t}\right|^{s} t d t$
where $J_{1}(t)=\frac{t}{2} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{2^{2 k} k!(k+1)!} t^{2 k}$ is the Bessel function of order 1 .

## Sketch of the proof: III

We employ Fourier-analytic bounds and quantitative versions of the Oleszkiewicz-Pełczyński integral inequality for the Bessel function:

For every $n \geq 1$ and every unit vector $a$ in $\mathbb{R}^{n}$, we have

$$
A_{n}(a) \leq 2 \prod_{k=1}^{n} \Psi\left(a_{k}^{-2}\right)^{a_{k}^{2}}
$$

where for $s>0$, we define $\Psi(s)=\frac{s}{4} \int_{0}^{\infty}\left|\frac{2 J_{1}(t)}{t}\right|^{s} t d t$
where $J_{1}(t)=\frac{t}{2} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{2^{2 k} k!(k+1)!} t^{2 k}$ is the Bessel function of order 1 .
Lemma. For the function $\Psi$ defined above, we have

$$
\Psi(s) \leq \begin{cases}1-\frac{1}{12}(s-2)^{2}, & 2 \leq s \leq \frac{8}{3}, \\ 1-\frac{1}{151 s}, & s>\frac{8}{3} .\end{cases}
$$

## Sketch of the proof: III

## Lemma

We have that $A_{n}(a) \leq 2 \exp \left\{-\frac{1}{151}\|a\|_{4}^{4}\right\}$, provided that $a_{1} \leq \sqrt{\frac{3}{8}}$.

## Sketch of the proof: III

## Lemma

We have that $A_{n}(a) \leq 2 \exp \left\{-\frac{1}{151}\|a\|_{4}^{4}\right\}$, provided that $a_{1} \leq \sqrt{\frac{3}{8}}$.

By the assumption, $a_{k}^{-2} \geq \frac{8}{3}$ for all $k$, thus

$$
\begin{aligned}
A_{n}(a) & \leq 2 \prod_{k=1}^{n} \Psi\left(a_{k}^{-2}\right)^{a_{k}^{2}} \\
& \leq 2 \prod_{k=1}^{n}\left(1-\frac{1}{151} a_{k}^{2}\right)^{a_{k}^{2}} \\
& \leq 2 \exp \left\{-\frac{1}{151} \sum_{k=1}^{n} a_{k}^{4}\right\} .
\end{aligned}
$$

## Sketch of the proof: IV



## Sketch of the proof: IV.a

## Lemma

$$
A_{n}(a) \leq 2-10^{-19} \text {, if } \sqrt{\frac{3}{8}} \leq a_{1} \leq \frac{1}{\sqrt{2}} \text { and } 6 \cdot 10^{-5} \leq a_{2} \leq \frac{1-10^{-5}}{\sqrt{2}} \text {. }
$$

## Sketch of the proof: IV.a

## Lemma

$$
A_{n}(a) \leq 2-10^{-19}, \text { if } \sqrt{\frac{3}{8}} \leq a_{1} \leq \frac{1}{\sqrt{2}} \text { and } 6 \cdot 10^{-5} \leq a_{2} \leq \frac{1-10^{-5}}{\sqrt{2}}
$$

Recall that:

$$
A_{n}(a) \leq 2 \prod_{k=1}^{n} \Psi\left(a_{k}^{-2}\right)^{a_{k}^{2}}
$$

Oleszkiewicz and Pełczyński's approach crucially relies on the fact that

$$
\sup _{s \geq 2} \Psi(s)=1
$$

## Sketch of the proof: IV.a

## Lemma

$A_{n}(a) \leq 2-10^{-19}$, if $\sqrt{\frac{3}{8}} \leq a_{1} \leq \frac{1}{\sqrt{2}}$ and $6 \cdot 10^{-5} \leq a_{2} \leq \frac{1-10^{-5}}{\sqrt{2}}$.
Recall that:

$$
A_{n}(a) \leq 2 \prod_{k=1}^{n} \Psi\left(a_{k}^{-2}\right)^{a_{k}^{2}}
$$

Oleszkiewicz and Pełczyński's approach crucially relies on the fact that

$$
\sup _{s \geq 2} \Psi(s)=1
$$

Hence, $\Psi\left(a_{k}^{-2}\right) \leq 1$ for each $k$, since $a_{k}^{-2} \geq 2$ for each $k$. Using this (for all $k$ except $k=2$ )

$$
A_{n}(a) \leq 2 \prod_{k=1}^{n} \Psi\left(a_{k}^{-2}\right)^{a_{k}^{2}} \leq 2 \Psi\left(a_{2}^{-2}\right)^{a_{2}^{2}}
$$

## Sketch of the proof: IV.b



## Sketch of the proof: IV.b

When $a_{1} \approx \frac{1}{\sqrt{2}}$ but $a_{2}, \ldots, a_{n}$ are small, we will employ a Berry-Esseen type bound with an explicit constant for random vectors in $\mathbb{R}^{4}$.

## Sketch of the proof: IV.b

When $a_{1} \approx \frac{1}{\sqrt{2}}$ but $a_{2}, \ldots, a_{n}$ are small, we will employ a Berry-Esseen type bound with an explicit constant for random vectors in $\mathbb{R}^{4}$. Raič ('19) has obtained such a result for an arbitrary dimension.

## Theorem (Raič)

Let $X_{1}, \ldots, X_{n}$ be independent mean 0 random vectors in $\mathbb{R}^{d}$ such that $\sum_{j=1}^{n} X_{j}$ has the identity covariance matrix. Let $G$ be a standard Gaussian random vector in $\mathbb{R}^{d}$. Then

$$
\sup _{A}\left|\mathbb{P}\left(\sum_{j=1}^{n} X_{j} \in A\right)-\mathbb{P}(G \in A)\right| \leq\left(42 d^{1 / 4}+16\right) \sum_{j=1}^{n} \mathbb{E}\left|X_{j}\right|^{3},
$$

where the supremum is over all Borel convex sets in $\mathbb{R}^{d}$.

## Sketch of the proof: IV.b

## Lemma

$A_{n}(a) \leq 2-10^{-5}$, provided that $\sqrt{\frac{3}{8}} \leq a_{1} \leq \frac{1}{\sqrt{2}}$ and $a_{2} \leq 6 \cdot 10^{-5}$.
Let $Y=\sum_{j=2}^{n} a_{j} \xi_{j}$ and observe that

$$
A_{n}(a)=\mathbb{E}\left|a_{1} \xi_{1}+Y\right|^{-2}=\mathbb{E} \min \left\{a_{1}^{-2},|Y|^{-2}\right\}
$$

## Sketch of the proof: IV.b

## Lemma

$A_{n}(a) \leq 2-10^{-5}$, provided that $\sqrt{\frac{3}{8}} \leq a_{1} \leq \frac{1}{\sqrt{2}}$ and $a_{2} \leq 6 \cdot 10^{-5}$.
Let $Y=\sum_{j=2}^{n} a_{j} \xi_{j}$ and observe that

$$
A_{n}(a)=\mathbb{E}\left|a_{1} \xi_{1}+Y\right|^{-2}=\mathbb{E} \min \left\{a_{1}^{-2},|Y|^{-2}\right\}=\int_{0}^{a_{1}^{-2}} \mathbb{P}\left(|Y|^{-2}>t\right) d t
$$

Since $Y$ has covariance matrix $\frac{1-a_{1}^{2}}{4}$ ld, using the Berry-Esseen bound (applied to $d=4$ and $X_{j}=\frac{2}{\sqrt{1-a_{1}^{2}}} a_{j} \xi_{j}, j=2, \ldots, n$ ).

## Sketch of the proof: IV.b

## Lemma

$A_{n}(a) \leq 2-10^{-5}$, provided that $\sqrt{\frac{3}{8}} \leq a_{1} \leq \frac{1}{\sqrt{2}}$ and $a_{2} \leq 6 \cdot 10^{-5}$.
Let $Y=\sum_{j=2}^{n} a_{j} \xi_{j}$ and observe that

$$
A_{n}(a)=\mathbb{E}\left|a_{1} \xi_{1}+Y\right|^{-2}=\mathbb{E} \min \left\{a_{1}^{-2},|Y|^{-2}\right\}=\int_{0}^{a_{1}^{-2}} \mathbb{P}\left(|Y|^{-2}>t\right) d t
$$

Since $Y$ has covariance matrix $\frac{1-a_{1}^{2}}{4}$ ld, using the Berry-Esseen bound (applied to $d=4$ and $X_{j}=\frac{2}{\sqrt{1-a_{1}^{2}}} a_{j} \xi_{j}, j=2, \ldots, n$ ).

$$
\begin{aligned}
& \mathbb{P}\left(|Y|^{-2}>t\right) \leq \mathbb{P}\left(\left(\sqrt{\frac{1-a_{1}^{2}}{4}}|G|\right)^{-2}>t\right)+ \\
& \quad(42 \sqrt{2}+16) \sum_{j=2}^{n} \mathbb{E}\left|\frac{2}{\sqrt{1-a_{1}^{2}}} a_{j} \xi_{j}\right|^{3}
\end{aligned}
$$

## Sketch of the proof: V



## Sketch of the proof: V

In perfect analogy to the real case, there is a complex analogue of the classical Busemann's theorem

## Sketch of the proof: V

In perfect analogy to the real case, there is a complex analogue of the classical Busemann's theorem

Theorem (Koldobsky-Paouris-Zymonopoulou ('13))
Let $K$ be a complex symmetric convex body $K$ in $\mathbb{C}^{n}$, that is $K$ is a convex body in $\mathbb{R}^{2 n}$ with $e^{i t} z \in K$, whenever $z \in K, t \in \mathbb{R}$. Then the function

$$
z \mapsto \frac{|z|}{\left(\operatorname{vol}_{2 n-2}\left(K \cap z^{\perp}\right)\right)^{1 / 2}}
$$

defines a norm on $\mathbb{C}^{n}$.

## Sketch of the proof: V

In perfect analogy to the real case, there is a complex analogue of the classical Busemann's theorem

Theorem (Koldobsky-Paouris-Zymonopoulou ('13))
Let $K$ be a complex symmetric convex body $K$ in $\mathbb{C}^{n}$, that is $K$ is a convex body in $\mathbb{R}^{2 n}$ with $e^{i t} z \in K$, whenever $z \in K, t \in \mathbb{R}$. Then the function

$$
z \mapsto \frac{|z|}{\left(\operatorname{vol}_{2 n-2}\left(K \cap z^{\perp}\right)\right)^{1 / 2}}
$$

defines a norm on $\mathbb{C}^{n}$.

## Lemma

For unit vectors $a, b$ in $\mathbb{R}^{n}$, we have

$$
\left|A_{n}(a)-A_{n}(b)\right| \leq 4 \sqrt{2}|a-b| .
$$

## Sketch of the proof: V

## Lemma

We have, $A_{n}(a) \leq 2-10^{-20}$, provided that $\frac{1}{\sqrt{2}}<a_{1} \leq \frac{1}{\sqrt{2}}+6 \cdot 10^{-41}$ and $a_{2} \leq \frac{1-10^{-4}}{\sqrt{2}}$.

We consider the following modification of $a$, the vector

$$
b=\left(\frac{1}{\sqrt{2}}, \sqrt{a_{1}^{2}+a_{2}^{2}-\frac{1}{2}}, a_{3}, \ldots, a_{n}\right) .
$$

Then

$$
A_{n}(a) \leq A_{n}(b)+4 \sqrt{2}|a-b| \leq 2-10^{-19}+8|a-b|
$$

## Stability of polydisc slicing

## Theorem (Glover, Tkocz, W.)

For $n \geq 2$ and every unit vector $a$ in $\mathbb{R}^{n}$ with $a_{1} \geq a_{2} \geq \cdots \geq a_{n} \geq 0$, we have

$$
\frac{1}{\pi^{n-1}} \operatorname{vol}_{2 n-2}\left(\mathbb{D}^{n} \cap a^{\perp}\right) \leq 2-\min \left\{10^{-40}\left|a-\frac{e_{1}+e_{2}}{\sqrt{2}}\right|, \frac{1}{76} \sum_{j=1}^{n} a_{j}^{4}\right\} .
$$

## Thank you for your attention!

