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Notation

Consider R™ with the standard inner product (x,y) = > ;" | z;¥; and

let |z] = \/(z, ).
Let S" L ={zeR": |z| =1}

We write eq, €9, ..., e, for the standard basis vectors.

(]

For a € S"~! we define the hyperplane perpendicular to a

at ={z eR": (z,a) =0}.

vol; stands for a Lebesgue measure on an appropriate subspace of
dimension 1.
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Extremal sections of the cube

Let Q, = [—%, %]n be the cube in R™.

Theorem (Ball)

For any a € S™~! we have that

1< VOln—l(Qn N aJ_) < \/é
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Extremal sections of the cube

Let Q,, = [—%, %]n be the cube in R™.

Theorem (Ball)

For any a € S™~! we have that

1< VOln—l(Qn N aJ_) < \/5

@ The lower bound was shown earlier independently by Hadwiger ('72)
and Hensley ('79), uniquely attained at

a = *e;

foranyi=1,...,n.
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Extremal sections of the cube

Let Q,, = [—%, %]n be the cube in R™.

Theorem (Ball)

For any a € S™~! we have that

1< VOln—l(Qn N aJ_) < \/5

@ The lower bound was shown earlier independently by Hadwiger ('72)
and Hensley ('79), uniquely attained at

a = *e;
foranyi=1,...,n.
@ The upper bound due to Ball ('86), uniquely attained at
a=e;*e;

for any @ # j.
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Stability of cube slicing

Theorem (Chasapis, Nayar, Tkocz)

For every unit vector a in R"™ with ay > as > --- > a, > 0, we have

el + e

V2

1
L+ la—el <voly1(Qunat) <vV2-6-107la
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Stability of cube slicing

Theorem (Chasapis, Nayar, Tkocz)

For every unit vector a in R"™ with ay > as > --- > a, > 0, we have

el + ez

V2

1
1+ 5_4|a _€1|2 < VOln—l(QnmaJ—) < \/5—6 .107° |a

@ The above formulation is due to Chasapis, Nayar and Tkocz ('22)
(constant in the upper bound is due to Eskenazis, Nayar and Tkocz)

@ A local version was established by Melbourne and Roberto ('22)
(with applications to information theory)
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The complex analogue
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The complex analogue

o For z,w € C", we let as usual (z,w) = }77_, 2jw; be their standard

inner product, and let |z| = \/(z, 2).

o Let D be the unit disc in the complex plane and let

D"=Dx---xD={zeC": max |z] <1}
1<j<n

be the polydisc in C".
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The complex analogue

o For z,w € C", we let as usual (z,w) = }77_, 2jw; be their standard
inner product, and let |z| = \/(z, 2).
o Let D be the unit disc in the complex plane and let

D"=Dx---xD={zeC": max |z] <1}
1<j<n

be the polydisc in C".

o In this setting, we identify C™ with R?" via the standard embedding.

1 asa subspace of R2" s

@ Note that here for a € C, the subspace a
of real dimension 2n — 2.
o Note that voly, o(D" 1) = 71

(obtained as the canonical section D" N (1,0,...,0)%).
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Extremal section of the polydisc

A counterpart of Ball's cube slicing in C™ was developed by Oleszkiewicz
and Petczyniski ('00):

Theorem (Oleszkiewicz, Petczynski)

For every (complex) hyperplane a~ = {z € C" : (z,a) = 0} orthogonal to
the vector a in C", we have

1<

VOlQn_Q(]D)n N aJ‘) < 2.

71-n—l
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Extremal section of the polydisc

A counterpart of Ball's cube slicing in C™ was developed by Oleszkiewicz
and Petczyniski ('00):

Theorem (Oleszkiewicz, Petczynski)
For every (complex) hyperplane a* = {z € C" : (z,a) = 0} orthogonal to

the vector a in C™, we have

1
1 < ﬁVOlQn_Q(]D)n N CLJ_) < 2.
™

@ The lower bound is attained uniquely at hyperplanes orthogonal to
the “standard basis vectors"

€ej, 1<j<mn,and{e€C sth|{|=1.

@ the upper one is attained uniquely at hyperplanes orthogonal to the
vectors

ej+&ep, 1<j<k<n, and{€C sth [¢|=1.




Extremal section of the polydisc

A counterpart of Ball's cube slicing in C™ was developed by Oleszkiewicz
and Petczyniski ('00):

Theorem (Oleszkiewicz, Petczynski)

For every (complex) hyperplane a = {z € C" : (z,a) = 0} orthogonal to
the vector a in C", we have

1< volg,—o(D™ N aJ‘) <2.

ﬂ-n—l

Thanks to the symmetries of D™ under the permutations of the
coordinates as well as complex rotations along axes

2 (M2, .., ez,

it suffices to consider real nonnegative vectors with nonincreasing
components.
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Stability of polydisc slicing
Theorem (Glover, Tkocz, W.)

have

Fvolgn_g D" N aJ‘) <2-min{ 107%°|g

For n > 2 and every unit vector a in R™ with a1 > as >

e] + e

V2
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Stability of polydisc slicing
Theorem (Glover, Tkocz, W.)

Forn > 2 and every unit vector a in R™ witha; > as > --- > a, > 0, we
have

(& @
—gvolan—2(D" N o) <2~ min J 10740 o — ELTE2

V2

2y
7%2%

J=1

a

The upper bound is the minimum over two quantities: the distance to the

unique extremiser and the £4 norm of a. The latter appears to account for
the fact that

li ! 1 DN (- )" =2
nl)lglo 7.rn_lvo 2n—2 <ﬁ7 ey %) = 4.

In other words, polidysc slicing admits an additional asymptotic (Gaussian)
extremiser.
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Stability of polydisc slicing
Theorem (Glover, Tkocz, W.)

Forn > 2 and every unit vector a in R™ witha; > as > --- > a, > 0, we
have

. _ e; +e 1 &
Fvolgn_g(]D)" N aL) <2-min{ 1074 g — % ) T Z a?
j=1

In the real case,

. 1 6
Jz&voln—l([—%,%]"m(%w.,%ﬁ) ): 2 < V2,
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Stability of polydisc slicing
Theorem (Glover, Tkocz, W.)

have

ﬁvolgn_g(]l])" N aL) <2-min{ 107%°|g

Forn > 2 and every unit vector a in R™ witha; > as > --- > a, > 0, we

e] + e

V2

1 n
75 2.9

J=1

A stability for the lower-bound can be easily extracted from previous works

of Chasapis, Nayar, Tkocz:

1
1 2
_Wn_1V012n72(]D)n Na ) >1+4+ Z|CL — 61| .
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Sketch of the proof
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Sketch of the proof

a2

1—10—"%

S

6 - 10—5 1.

\
4

1 1 I—41 al
7z E+6-10

oW
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For convenience, we consider the normalised section function
A _ 1o D" Na* R™
n(a) = FVO Qn_2( Na ), a <€

so that A, (e1) = ﬂn—l_lvolzn—2(]1])n—1) -1
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For convenience, we consider the normalised section function
A R S D" Na* R"
n(a) = WVO Qn_Q( Na ), a €

so that A, (e1) = 7Tnil_lV012n—2(]Dn_1) =1

Our approach, to a large extent, relies on the following probabilistic
formula for the volume of sections of the polydisc:

Lemma (Brzezinski ('13))

For every n > 1 and every unit vector a in R", we have

n
> ak
k=1

where £1,&s, ... are independent random vectors uniform on the unit
sphere S3 in R*.

—2

Y

Ap(a) =E
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Sketch of the proof: |

a2

1—10—"%

S

6 - 10—5 1.

\
4

1 1 I—41 al
7z E+6-10

oW
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Sketch of the proof: |
We set

2
0(a) = ‘a - 61\—/’_;2

We reapply polydisc slicing in a lower dimension to a portion of a, which
yields its self-improvement and gives a quantitative deficit:

=2—V2(a1 + az)

Lemma

We have, A, ( \/ ), provided that 6(a) < 2-107%.
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Lemma

Let X and Y be independent rotationally invariant random vectors in R*,

E|X +Y|™* = Emin{|X|7% |Y] 7%}
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Lemma

Let X and Y be independent rotationally invariant random vectors in R*,

E|X + Y| = Emin{|X|"2, |V}

Let X = a1&i +azfp and Y = 377 3 a;&;. Then,
Ap(a) = Emin{|X| 72, [Y|7?} < Ex min{|X|7%, Ey|Y|7?},

where we use the concavity of ¢ — min{«, t}.
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Lemma

Let X and Y be independent rotationally invariant random vectors in R*,

E|X + Y| = Emin{|X|"2, |V}

Let X = a1&i +azfp and Y = 377 3 a;&;. Then,
Ap(a) = Emin{|X| 72, [Y|7?} < Ex min{|X|7%, Ey|Y|7?},

where we use the concavity of ¢ — min{«, t}.

By polydisc slicing, Ey|Y|2 < 1_a§_a2. Hence
1 2
An(a) < Emind | X] 2, — >
= "1—a?—a3
_ _ 2
=E|X]| Q}E(|X] 2771 . 2>
—ay— a3/ 4
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Lemma

Let X and Y be independent rotationally invariant random vectors in R*,

E|X + Y| = Emin{|X|"2, |V}

Let X = a1&i +azfp and Y = 377 3 a;&;. Then,
Ap(a) = Emin{|X| 72, [Y|7?} < Ex min{|X|7%, Ey|Y|7?},

where we use the concavity of ¢ — min{«, t}.

By polydisc slicing, Ey|Y|2 < 1_a§_a2. Hence
1 2
An(a) < Emind | X] 2, — >
= "1—a?—a3
_ _ 2
=E|X]| Q}E(|X] 2771 . 2>
—ay— a3/ 4

Use again that E|X |2 = min{a;?, a5 ?} = a2
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Sketch of the proof: Il

a2

1—10—"%

S

6 - 10—5 1.

\
4
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Sketch of the proof: Il

Lemma
We have, A,(a) <2 —12v/2-10~%, provided that a; > % +6-1074. J
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Sketch of the proof: Il

Lemma

We have, A, (a) <2 —12v/2-107%, provided that a; > % +6-1074.

Recall that )

Ap(a) =E

n
> a
k=1

Let X = a1 and Y = Z?:Q a;&;.

An(a) = Emin{|X|72|Y]|7?} < a7? <2(1 —6vV2-1074).
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Sketch of the proof: IlI

a2

1—10—"%

S

6 - 10—5 1.

\
4

1 1 I—41 al
7z E+6-10
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Sketch of the proof: Il

We employ Fourier-analytic bounds and quantitative versions of the
Oleszkiewicz-Petczynski integral inequality for the Bessel function:
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Sketch of the proof: Il

We employ Fourier-analytic bounds and quantitative versions of the
Oleszkiewicz-Petczynski integral inequality for the Bessel function:

For every n > 1 and every unit vector a in R", we have
n
2
<2 we*)%,
k=1

where for s > 0, we define U(s) = if(]oo ‘2]1(15)

S
‘ tdt

where Ji(t) = 3 D 22,%, lc)+1) t2F is the Bessel function of order 1.
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Sketch of the proof: Il

We employ Fourier-analytic bounds and quantitative versions of the
Oleszkiewicz-Petczynski integral inequality for the Bessel function:

For every n > 1 and every unit vector a in R", we have
n
2
<2 we*)%,
k=1

where for s > 0, we define U(s) = if(]oo ‘2]1(15)

S
‘ tdt

where Ji(t) = 3 D 22,%, lc)+1) t2F is the Bessel function of order 1.

Lemma. For the function ¥ defined above, we have

)< {1— L(s—2)?, 2

8
§§7

1 - 15157 &

ARV

s
8
3
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Sketch of the proof: Il

Lemma

We have that A, (a) < 2exp{ - ﬁ”a”i}, provided that a; < \/g. J
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Sketch of the proof: Il

Lemma

We have that A, (a) < 2exp{ — ﬁ”a”ﬁi}, provided that a; < \/g.

By the assumption, a,:2 > % for all k, thus

k=1
n
<2 H (1 - 151az)ak
k=1
n
< 2exp{ — %Zai}
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Sketch of the proof: IV
as
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Sketch of the proof: 1V.a

Lemma

Ap(a) <2-1071, if \/é <a;<-L and 6-107° < ay < =107

V2

1
V2
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Sketch of the proof: IV.a

Lemma
A()<2—10 19,If \/7<a,1 \/L, and6.10_5§a2§1—\1/%_5_
Recall that: .
An(a) <2]] U(a; )%,
k=1

Oleszkiewicz and Petczynski's approach crucially relies on the fact that

sup U(s) =
s>2
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Sketch of the proof: IV.a

Lemma

19 1 -5 1-10-°
A()<2—10 ,If\/7<a1 T and 6-10 SGZST-
Recall that:

U (a2) %

=

Ap(a) <2

)

B
Il
—_

Oleszkiewicz and Petczynski's approach crucially relies on the fact that

sup U(s) =
s>2

Hence, \If(a,f) < 1 for each k, since a,;Q > 2 for each k. Using this (for
all k except k = 2)
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Sketch of the proof: IV.b
as

1—10—"%
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Sketch of the proof: IV.b

1
V2
type bound with an explicit constant for random vectors in R*.

When a1 ~ but as, ..., a, are small, we will employ a Berry-Esseen
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Sketch of the proof: IV.b

When a1 = % but as,...,a, are small, we will employ a Berry-Esseen
type bound with an explicit constant for random vectors in R*.
Rai¢ ('19) has obtained such a result for an arbitrary dimension.

Theorem (Raig)

Let X1,..., X, be independent mean 0 random vectors in R® such that
Z;-lzl X has the identity covariance matrix. Let G' be a standard
Gaussian random vector in R%. Then

sup [P X; € A) —P(G € A)| < (42d"/* +16) Y _E|X;°,
A - -
Jj=1 j=1

where the supremum is over all Borel convex sets in RY.
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Sketch of the proof: IV.b

Lemma

Ap(a) <2 —107°, provided that \/g <a < % and ay < 6-107°.

Let Y = 3", a;{; and observe that

An(a) =Elai& + Y| = Emin {a;?, |V 2}
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Sketch of the proof: IV.b

Lemma
An(a) <2 —107°, provided that \/g <a < \/LQ and ay < 6-107°. J
Let Y = 3", a;{; and observe that

Ap(a) =Ela1& + Y| ? = Emin {al?, Y%} = / P(|Y|™2 > t)dt

Since Y has covariance matrix 1_4‘11 Id, using the Berry-Esseen bound
i — 2 a6 i
(applied to d =4 and X; = Maﬁj, j=2,...,n).
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Sketch of the proof: IV.b

Lemma
An(a) <2 —107°, provided that \/g <a; < \/LQ and ay < 6-107°. J
Let Y = 3", a;{; and observe that

Ap(a) =Ela1& + Y| ? = Emin {al?, Y%} = / P(|Y|™2 > t)dt

Since Y has covariance matrix 1_4a1 Id, using the Berry-Esseen bound
i — 2 a6 i
(applied to d =4 and X; = Ma]@, j=2,...,n).

B(IY|72 > 1) < P((y 52161) 7 > 0)+

n 3

(42v2+16) Y E

J=2

505€;
1
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Sketch of the proof: V
as
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Sketch of the proof: V

In perfect analogy to the real case, there is a complex analogue of the
classical Busemann's theorem
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Sketch of the proof: V

In perfect analogy to the real case, there is a complex analogue of the
classical Busemann's theorem

Theorem (Koldobsky-Paouris-Zymonopoulou ('13))

Let K be a complex symmetric convex body K in C", that is K is a

convex body in R2" with ¢z € K, whenever z € K, t € R. Then the
function
2|

# olon_a(K N 21))i72

defines a norm on C".
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Sketch of the proof: V

In perfect analogy to the real case, there is a complex analogue of the
classical Busemann's theorem

Theorem (Koldobsky-Paouris-Zymonopoulou ('13))

Let K be a complex symmetric convex body K in C", that is K is a
convex body in R2™ with etz € K, whenever z € K, t € R. Then the
function

||

# olon_a(K N 21))i72

defines a norm on C".

Lemma

For unit vectors a,b in R™, we have

|An(a) — An(b)] < 4v/2|a — b].
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Sketch of the proof: V

Lemma

We have, Ap(a) < 2— 10729, provided that = < a; < 4= + 610~
V2

\/>2
- \/§

We consider the following modification of a, the vector

1 1
b:(E, a%—i—a%—ﬁ,ag;,...?an).

An(a) < Ap(b) +4v2|a — b <2 — 1071 + 8|a — b|.

Then
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Stability of polydisc slicing

Theorem (Glover, Tkocz, W.)

For n > 2 and every unit vector a in R™ with a1 > as >

e >an >0, we
have
1 . _ e1 + ez 1 &
ﬂ_n_1V012n—2(DnﬂaJ_) <2 -—min{ 1074 a—W , %Za?

j=1

Kasia Wyczesany 29 June 2023




Thank you for your attention!




