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The Monge-Ampére equation
In one of its general forms:

detD2upxq “ f px , upxq,Dupxqq.

Some geometric forms:

detD2upxq “
f pxq

p1 ` |Dupxq|2qα{2 .

‚ α “ 0: Prescribed Gauss curvature as a function of the normals (actually, the
gradient),

‚ α “ n ` 2: Prescribed Gauss curvature as a function of the projection of points in
the boundary,

‚ α “ n ` 1: Aleksandrov problem.
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Entire solutions

Solving the problem with data over Rn gives entire solutions.

Usually:

‚ Compact domain Ñ Dirichlet conditions,
‚ dompuq “ Rn Ñ second boundary problem (prescribing an asymptotic cone).

In the entire case, these boundary conditions exhaust only Lipschitz solutions.
E.g. (Pogorelov, Calabi, Yau...)

detD2upxq “ 1.

We focus on entire solutions.
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R-curvature
A widely studied problem (Aleksandrov, Pogorelov, Bakelman, Urbas...) is the
Monge-Ampére equation for R-curvatures:

detD2upxq “
f pxq

RpDupxqq
.

Weak solutions:
ż

B

f pxq dx “

ż

BupBq

Rppq dp

for every Borel set B Ă dompuq, where

Bupxq “ tp P Rn : f pyq ě f pxq ` p ¨ px ´ yq @y P Rn
u.

By Caffarelli’s regularity theory, under suitable assumptions weak solutions are classical
solutions (e.g. Bielawski, ’04).
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Our generalization
We look for entire solutions to equations of the form

cϕpDupxq, u˚
pDupxqqq detD2upxq “ f pxq,

where u˚ppq “ supxPRntx ¨ p ´ upxqu, c ą 0, ϕ : Rn`1 Ñ R, and f : Rn Ñ R.

Weak solutions satisfy
ż

B

f pxq dx “

ż

BupBq

cϕpp, u˚
ppqq dp — ωpB , u, cϕq.

We can use a measure ρ instead of f :

ρpBq “ ωpB , u, cϕq.

(Again, suitable regularity gives classical solutions)
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Geometric idea

A continuous function ϕ : Rn`1 Ñ R can be considered as the density of a measure µ
on Rn`1.

We can consider the corresponding weighted surface area measure (Zvavitch, Lyvschitz,
Fradelizi, Langharst, Kryvonos, Roysdon, Zhao...)

Sµ
K pBq –

ż

τK pBq

ϕpX q dHn
pX q

for every convex compact set K in Rn`1, where τK is the reverse spherical image.
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Weighted Minkowski problem

Theorem [Kryvonos and Langharst, ’23]
Let µ be an even Borel measure on Rn`1 satisfying

lim
rÑ8

µprB2
n`1qβ{n

r
“ 0 and lim

rÑ0`

µprB2
n`1qβ{n

r
“ `8.

Suppose ρ is a finite, even Borel measure on Sn that is not concentrated in any great
subsphere. Then, there exists a centrally symmetric convex compact set K Ă Rn`1 such
that

dρpξq “ cµ,KdS
µ
K pξq, cµ,K – µpK q

β
n

´1.

In the spirit of the geometric interpretations, what’s the functional version of this
problem?
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Main result
Theorem [U., +’23]
Consider a Borel measure ρ on Rn that is not concentrated on an affine hyperplane.
Consider, moreover, a continuous, and even function ϕ : Rn`1 Ñ r0,8q. Then, if ρ has
finite first moment, i.e.

ż

Rn

|x | dρpxq ă `8,

and the measure µ with density ϕ with respect to the Lebesgue measure satisfies

lim
rÑ8

µprB2
n`1qβ{n

r
“ 0 and lim

rÑ0`

µprB2
n`1qβ{n

r
“ `8,

there exist c ą 0 and a convex function u such that for every Borel set B Ă Rn

ωpB , u, cϕq “ ρpBq.
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Regularity

Using some tools from Caffarelli’s regularity theory, we obtain the following.

Theorem [U., +’23]
In the hypotheses of the previous Theorem, suppose moreover that ρ has continuous
density f with respect to the Lebesgue measure. If f and ϕ are such that there exists
c ą 0 such that f , ϕ ą c and of class C k,α for some k ě 0 and α ą 0, then any weak
solution is of class C k`2,α.
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‚ The density ϕ is even in Rn`1, but this does not give any specific symmetry in for
the solutions,

‚ In hypothesis of regularity, the equation reads as

cϕpDupxq, x ¨ Dupxq ´ upxqq detD2upxq “ f pxq.

Equations explicitly depending on u usually (see e.g. Bakelman, require high
regularity),

‚ Regularity extends directly to the weighted Minkowski problem,
‚ Lack of uniqueness: How can we prescribe an asymptotic cone?
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Sketch of the proof

Step 1. Fix a vector v P Sn, vK ” Rn.

Consider the measure

ρ1
pBq –

ż

B

a

1 ` |x |2 dρpxq.

We lift it as a measure on the sphere through the inverse gnomonic projection

L : Rn
Ñ Sn

´ “ tξ P Sn : ξ ¨ v ă 0u

x ÞÑ
px ,´1q

a

1 ` |x |2
.

We extend the measure by symmetry (here hides the non-uniqueness)Ñ by the weighted
version of the Minkowski problem, exists K !
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Step 2. Consider BK´ – τK pSn
´q

Ñ we can define the function

wpxq – inftt : x ` tv P Ku,

and the graph of w corresponds to BK´.

Finally, we can move "back" to Rn via ∇w , with u – w˚ as candidate solution.

To sum up:
BK´

π

��

Sn
´τK

oo

dompwq
∇w

// Rn

L

OO

Core idea: x “ L´1 ˝ τ´1
K ˝ π´1 ˝ Bupxq
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Step 3. We have the corresponding changes of variables:

ωpB , u, cϕq “

ż

BupBq

cϕppx ,wpxqqq dx “

ż

π´1˝BupBq

cϕpyq
a

1 ` |Dwpπpyqq|2
dHn

pyq

“

ż

τ´1
K ˝π´1˝BupBq

|ξ ¨ v | cµ,KdS
µ
K pξq “

ż

L´1˝τ´1
K ˝π´1˝BupBq

1
a

1 ` |z |2
dρ1

pzq

“

ż

L´1˝τ´1
K ˝π´1˝BupBq

dρpzq “ ρpBq.
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THANKS FOR YOUR ATTENTION!
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