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The Monge-Ampére equation

In one of its general forms:
det D?u(x) = f(x, u(x), Du(x)).
Some geometric forms:

f(x)

det D?u(x) = AT DU

® o = 0: Prescribed Gauss curvature as a function of the normals (actually, the
gradient),

® o = n+ 2: Prescribed Gauss curvature as a function of the projection of points in
the boundary,

* o = n+ 1: Aleksandrov problem.
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Entire solutions

Solving the problem with data over R" gives entire solutions.
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Entire solutions

Solving the problem with data over R" gives entire solutions.
Usually:

e Compact domain — Dirichlet conditions,

* dom(u) = R” — second boundary problem (prescribing an asymptotic cone).

In the entire case, these boundary conditions exhaust only Lipschitz solutions.
E.g. (Pogorelov, Calabi, Yau...)

det D?u(x) = 1.
We focus on entire solutions.
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R-curvature
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R-curvature

A widely studied problem (Aleksandrov, Pogorelov, Bakelman, Urbas...) is the
Monge-Ampére equation for R-curvatures:

det D?u(x) =

Weak solutions:

| roa=]  Red

ou(B)
for every Borel set B  dom(u), where

ou(x)={peR": f(y) =f(x)+p-(x—y)VyeR".

By Caffarelli's regularity theory, under suitable assumptions weak solutions are classical
solutions (e.g. Bielawski, '04).
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Our generalization

We look for entire solutions to equations of the form
co(Du(x), u*(Du(x))) det D?u(x) = f(x),
where u*(p) = sup,go{x-p—u(x)}, ¢ >0, ¢ : R - R, and f : R" - R.
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Our generalization

We look for entire solutions to equations of the form
co(Du(x), u*(Du(x))) det D?u(x) = f(x),
where u*(p) = sup,go{x-p—u(x)}, ¢ >0, ¢ : R - R, and f : R" - R.

Weak solutions satisfy

L Fx)ax = | colp,u*(p)) dp = w(B.u,co).

ou(B)

We can use a measure p instead of f:

p(B) = w(B, u,cp).

(Again, suitable regularity gives classical solutions)
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A continuous function ¢ : R™! — R can be considered as the density of a measure p
on R™1,
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A continuous function ¢ : R™! — R can be considered as the density of a measure p
on R™1,

We can consider the corresponding weighted surface area measure (Zvavitch, Lyvschitz,
Fradelizi, Langharst, Kryvonos, Roysdon, Zhao...)

Si(B) = f o P00

for every convex compact set K in R™1 where 7x is the reverse spherical image.
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Weighted Minkowski problem

Theorem [Kryvonos and Langharst, '23]

Let 1 be an even Borel measure on R"*! satisfying

B2 B/n B2 B/n
lim M =0and lim M

r—00 r r—0+ r

= +00.

Suppose p is a finite, even Borel measure on S” that is not concentrated in any great
subsphere. Then, there exists a centrally symmetric convex compact set K < R"*! such
that

s|®

dp(f) = Cu,KdS}lé(g)a Cu,K = M(K) _1'
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Weighted Minkowski problem

Theorem [Kryvonos and Langharst, '23]

Let 1 be an even Borel measure on R"*! satisfying

B2 B/n B2 B/n
lim M =0and lim M

r—00 r r—0+ r

= +00.

Suppose p is a finite, even Borel measure on S” that is not concentrated in any great
subsphere. Then, there exists a centrally symmetric convex compact set K < R"*! such
that

dp(€) = CurdSK(E),  Cun = u(K)7 ™
In the spirit of the geometric interpretations, what's the functional version of this
problem?
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Main result

Theorem [U., +'23]

Consider a Borel measure p on R” that is not concentrated on an affine hyperplane.
Consider, moreover, a continuous, and even function ¢ : R™! — [0, 00). Then, if p has
finite first moment, i.e.

| xldoto) <+
]Rn
and the measure 1 with density ¢ with respect to the Lebesgue measure satisfies

B2 B/n BZ B/n
lim M =0and lim M

= +w7
r—0o0 r r—0+ r

there exist ¢ > 0 and a convex function u such that for every Borel set B < R”

w(B, u, cp) = p(B).

v
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Regularity

Using some tools from Caffarelli's regularity theory, we obtain the following.

Theorem [U., +'23]

In the hypotheses of the previous Theorem, suppose moreover that p has continuous
density f with respect to the Lebesgue measure. If f and ¢ are such that there exists
¢ > 0 such that f,¢ > c and of class C¥* for some k > 0 and a > 0, then any weak
solution is of class Ck+22.
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* The density ¢ is even in R"™! but this does not give any specific symmetry in for
the solutions,
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The density ¢ is even in R™"1, but this does not give any specific symmetry in for

the solutions,

In hypothesis of regularity, the equation reads as
co(Du(x), x - Du(x) — u(x)) det D*u(x) = f(x).

Equations explicitly depending on u usually (see e.g. Bakelman, require high
regularity),

Regularity extends directly to the weighted Minkowski problem,

Lack of uniqueness: How can we prescribe an asymptotic cone?
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Sketch of the proof

Step 1. Fix a vector v € S", vt = R".
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Sketch of the proof

Step 1. Fix a vector v € S”, vt = R". Consider the measure

§(8) = | NI+ P dp(x)
B
We lift it as a measure on the sphere through the inverse gnomonic projection

L:R">8§" ={¢eS": ¢ -v<0}
(X’_l)
VAN

We extend the measure by symmetry (here hides the non-uniqueness)— by the weighted
version of the Minkowski problem, exists K!

>
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Step 2. Consider 0K _ == 74 (S™)
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Step 2. Consider 0K _ = 7(S") — we can define the function
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Step 2. Consider 0K _ = 7(S") — we can define the function
w(x) = inf{t: x + tv e K},
and the graph of w corresponds to 0K _.
Finally, we can move "back" to R"” via Vw, with v := w* as candidate solution.

To sum up:

I |

dom(w) ———R”

Core idea: x = L™* o7t o 771 0 du(x)
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Step 3. We have the corresponding changes of variables:

[ co(y)
w(B,u,co) = co((x,w(x))) dx = dH"
Buco)= [ eollewio) f e T BT W

1
= |f V’ C 7deu(f) = f T
JTElowfloau(B) . K LflOTgloﬂiloa”(B) V 1 + ‘2’2

N

[

dp'(z)

J L*lofglowfloau(B)
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THANKS FOR YOUR ATTENTION!



