Entire Monge-Ampére equations and weighted Minkowski problems

Jacopo Ulivelli

SAPIENZA
 Universitì di Roma

Department of Mathematics Guido Castelnuovo

26th-30th June 2023
INdAM Meeting, "Convex Geometry - Analytic Aspects", Cortona

The Monge-Ampére equation

In one of its general forms:

$$
\operatorname{det} D^{2} u(x)=f(x, u(x), D u(x)) .
$$

The Monge-Ampére equation

In one of its general forms:

$$
\operatorname{det} D^{2} u(x)=f(x, u(x), D u(x))
$$

Some geometric forms:

$$
\operatorname{det} D^{2} u(x)=\frac{f(x)}{\left(1+|D u(x)|^{2}\right)^{\alpha / 2}} .
$$

The Monge-Ampére equation

In one of its general forms:

$$
\operatorname{det} D^{2} u(x)=f(x, u(x), D u(x)) .
$$

Some geometric forms:

$$
\operatorname{det} D^{2} u(x)=\frac{f(x)}{\left(1+|D u(x)|^{2}\right)^{\alpha / 2}} .
$$

- $\alpha=0$: Prescribed Gauss curvature as a function of the normals (actually, the gradient),

The Monge-Ampére equation

In one of its general forms:

$$
\operatorname{det} D^{2} u(x)=f(x, u(x), D u(x)) .
$$

Some geometric forms:

$$
\operatorname{det} D^{2} u(x)=\frac{f(x)}{\left(1+|D u(x)|^{2}\right)^{\alpha / 2}} .
$$

- $\alpha=0$: Prescribed Gauss curvature as a function of the normals (actually, the gradient),
- $\alpha=n+2$: Prescribed Gauss curvature as a function of the projection of points in the boundary,

The Monge-Ampére equation

In one of its general forms:

$$
\operatorname{det} D^{2} u(x)=f(x, u(x), D u(x))
$$

Some geometric forms:

$$
\operatorname{det} D^{2} u(x)=\frac{f(x)}{\left(1+|D u(x)|^{2}\right)^{\alpha / 2}} .
$$

- $\alpha=0$: Prescribed Gauss curvature as a function of the normals (actually, the gradient),
- $\alpha=n+2$: Prescribed Gauss curvature as a function of the projection of points in the boundary,
- $\alpha=n+1$: Aleksandrov problem.

Entire solutions

Solving the problem with data over \mathbb{R}^{n} gives entire solutions.

Entire solutions

Solving the problem with data over \mathbb{R}^{n} gives entire solutions. Usually:

- Compact domain \rightarrow Dirichlet conditions,

Entire solutions

Solving the problem with data over \mathbb{R}^{n} gives entire solutions. Usually:

- Compact domain \rightarrow Dirichlet conditions,
- $\operatorname{dom}(u)=\mathbb{R}^{n} \rightarrow$ second boundary problem (prescribing an asymptotic cone).

Entire solutions

Solving the problem with data over \mathbb{R}^{n} gives entire solutions. Usually:

- Compact domain \rightarrow Dirichlet conditions,
- $\operatorname{dom}(u)=\mathbb{R}^{n} \rightarrow$ second boundary problem (prescribing an asymptotic cone).

Entire solutions

Solving the problem with data over \mathbb{R}^{n} gives entire solutions. Usually:

- Compact domain \rightarrow Dirichlet conditions,
- $\operatorname{dom}(u)=\mathbb{R}^{n} \rightarrow$ second boundary problem (prescribing an asymptotic cone).

In the entire case, these boundary conditions exhaust only Lipschitz solutions. E.g. (Pogorelov, Calabi, Yau...)

$$
\operatorname{det} D^{2} u(x)=1 .
$$

Entire solutions

Solving the problem with data over \mathbb{R}^{n} gives entire solutions. Usually:

- Compact domain \rightarrow Dirichlet conditions,
- $\operatorname{dom}(u)=\mathbb{R}^{n} \rightarrow$ second boundary problem (prescribing an asymptotic cone).

In the entire case, these boundary conditions exhaust only Lipschitz solutions. E.g. (Pogorelov, Calabi, Yau...)

$$
\operatorname{det} D^{2} u(x)=1 .
$$

We focus on entire solutions.

R-curvature

A widely studied problem (Aleksandrov, Pogorelov, Bakelman, Urbas...) is the Monge-Ampére equation for R-curvatures:

$$
\operatorname{det} D^{2} u(x)=\frac{f(x)}{R(D u(x))} .
$$

R-curvature

A widely studied problem (Aleksandrov, Pogorelov, Bakelman, Urbas...) is the Monge-Ampére equation for R-curvatures:

$$
\operatorname{det} D^{2} u(x)=\frac{f(x)}{R(D u(x))}
$$

Weak solutions:

$$
\int_{B} f(x) d x=\int_{\partial u(B)} R(p) d p
$$

for every Borel set $B \subset \operatorname{dom}(u)$, where

$$
\partial u(x)=\left\{p \in \mathbb{R}^{n}: f(y) \geqslant f(x)+p \cdot(x-y) \forall y \in \mathbb{R}^{n}\right\}
$$

R-curvature

A widely studied problem (Aleksandrov, Pogorelov, Bakelman, Urbas...) is the Monge-Ampére equation for R-curvatures:

$$
\operatorname{det} D^{2} u(x)=\frac{f(x)}{R(D u(x))}
$$

Weak solutions:

$$
\int_{B} f(x) d x=\int_{\partial u(B)} R(p) d p
$$

for every Borel set $B \subset \operatorname{dom}(u)$, where

$$
\partial u(x)=\left\{p \in \mathbb{R}^{n}: f(y) \geqslant f(x)+p \cdot(x-y) \forall y \in \mathbb{R}^{n}\right\}
$$

By Caffarelli's regularity theory, under suitable assumptions weak solutions are classical solutions (e.g. Bielawski, '04).

Our generalization

We look for entire solutions to equations of the form

$$
c \phi\left(D u(x), u^{*}(D u(x))\right) \operatorname{det} D^{2} u(x)=f(x),
$$

where $u^{*}(p)=\sup _{x \in \mathbb{R}^{n}}\{x \cdot p-u(x)\}, c>0, \phi: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$, and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Our generalization

We look for entire solutions to equations of the form

$$
c \phi\left(D u(x), u^{*}(D u(x))\right) \operatorname{det} D^{2} u(x)=f(x),
$$

where $u^{*}(p)=\sup _{x \in \mathbb{R}^{n}}\{x \cdot p-u(x)\}, c>0, \phi: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$, and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
Weak solutions satisfy

$$
\int_{B} f(x) d x=\int_{\partial u(B)} c \phi\left(p, u^{*}(p)\right) d p=: \omega(B, u, c \phi) .
$$

Our generalization

We look for entire solutions to equations of the form

$$
c \phi\left(D u(x), u^{*}(D u(x))\right) \operatorname{det} D^{2} u(x)=f(x),
$$

where $u^{*}(p)=\sup _{x \in \mathbb{R}^{n}}\{x \cdot p-u(x)\}, c>0, \phi: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$, and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
Weak solutions satisfy

$$
\int_{B} f(x) d x=\int_{\partial u(B)} c \phi\left(p, u^{*}(p)\right) d p=: \omega(B, u, c \phi) .
$$

We can use a measure ρ instead of f :

$$
\rho(B)=\omega(B, u, c \phi) .
$$

(Again, suitable regularity gives classical solutions)

Geometric idea

A continuous function $\phi: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ can be considered as the density of a measure μ on \mathbb{R}^{n+1}.

Geometric idea

A continuous function $\phi: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ can be considered as the density of a measure μ on \mathbb{R}^{n+1}.

We can consider the corresponding weighted surface area measure (Zvavitch, Lyvschitz, Fradelizi, Langharst, Kryvonos, Roysdon, Zhao...)

$$
S_{K}^{\mu}(B):=\int_{\tau_{K}(B)} \phi(X) d \mathcal{H}^{n}(X)
$$

for every convex compact set K in \mathbb{R}^{n+1}, where τ_{K} is the reverse spherical image.

Weighted Minkowski problem

Theorem [Kryvonos and Langharst, '23]
Let μ be an even Borel measure on \mathbb{R}^{n+1} satisfying

$$
\lim _{r \rightarrow \infty} \frac{\mu\left(r B_{n+1}^{2}\right)^{\beta / n}}{r}=0 \text { and } \lim _{r \rightarrow 0^{+}} \frac{\mu\left(r B_{n+1}^{2}\right)^{\beta / n}}{r}=+\infty
$$

Suppose ρ is a finite, even Borel measure on \mathbb{S}^{n} that is not concentrated in any great subsphere. Then, there exists a centrally symmetric convex compact set $K \subset \mathbb{R}^{n+1}$ such that

$$
d \rho(\xi)=c_{\mu, K} d S_{K}^{\mu}(\xi), \quad c_{\mu, K}:=\mu(K)^{\frac{\beta}{n}-1} .
$$

Weighted Minkowski problem

Theorem [Kryvonos and Langharst, '23]
Let μ be an even Borel measure on \mathbb{R}^{n+1} satisfying

$$
\lim _{r \rightarrow \infty} \frac{\mu\left(r B_{n+1}^{2}\right)^{\beta / n}}{r}=0 \text { and } \lim _{r \rightarrow 0^{+}} \frac{\mu\left(r B_{n+1}^{2}\right)^{\beta / n}}{r}=+\infty
$$

Suppose ρ is a finite, even Borel measure on \mathbb{S}^{n} that is not concentrated in any great subsphere. Then, there exists a centrally symmetric convex compact set $K \subset \mathbb{R}^{n+1}$ such that

$$
d \rho(\xi)=c_{\mu, K} d S_{K}^{\mu}(\xi), \quad c_{\mu, K}:=\mu(K)^{\frac{\beta}{n}-1} .
$$

In the spirit of the geometric interpretations, what's the functional version of this problem?

Main result

Theorem [U., +'23]

Consider a Borel measure ρ on \mathbb{R}^{n} that is not concentrated on an affine hyperplane. Consider, moreover, a continuous, and even function $\phi: \mathbb{R}^{n+1} \rightarrow[0, \infty)$. Then, if ρ has finite first moment, i.e.

$$
\int_{\mathbb{R}^{n}}|x| d \rho(x)<+\infty
$$

and the measure μ with density ϕ with respect to the Lebesgue measure satisfies

$$
\lim _{r \rightarrow \infty} \frac{\mu\left(r B_{n+1}^{2}\right)^{\beta / n}}{r}=0 \text { and } \lim _{r \rightarrow 0^{+}} \frac{\mu\left(r B_{n+1}^{2}\right)^{\beta / n}}{r}=+\infty
$$

there exist $c>0$ and a convex function u such that for every Borel set $B \subset \mathbb{R}^{n}$

$$
\omega(B, u, c \phi)=\rho(B) .
$$

Regularity

Using some tools from Caffarelli's regularity theory, we obtain the following.

Theorem [U., +'23]

In the hypotheses of the previous Theorem, suppose moreover that ρ has continuous density f with respect to the Lebesgue measure. If f and ϕ are such that there exists $c>0$ such that $f, \phi>c$ and of class $C^{k, \alpha}$ for some $k \geqslant 0$ and $\alpha>0$, then any weak solution is of class $C^{k+2, \alpha}$.

- The density ϕ is even in \mathbb{R}^{n+1}, but this does not give any specific symmetry in for the solutions,
- The density ϕ is even in \mathbb{R}^{n+1}, but this does not give any specific symmetry in for the solutions,
- In hypothesis of regularity, the equation reads as

$$
c \phi(D u(x), x \cdot D u(x)-u(x)) \operatorname{det} D^{2} u(x)=f(x)
$$

Equations explicitly depending on u usually (see e.g. Bakelman, require high regularity),

- The density ϕ is even in \mathbb{R}^{n+1}, but this does not give any specific symmetry in for the solutions,
- In hypothesis of regularity, the equation reads as

$$
c \phi(D u(x), x \cdot D u(x)-u(x)) \operatorname{det} D^{2} u(x)=f(x)
$$

Equations explicitly depending on u usually (see e.g. Bakelman, require high regularity),

- Regularity extends directly to the weighted Minkowski problem,
- The density ϕ is even in \mathbb{R}^{n+1}, but this does not give any specific symmetry in for the solutions,
- In hypothesis of regularity, the equation reads as

$$
c \phi(D u(x), x \cdot D u(x)-u(x)) \operatorname{det} D^{2} u(x)=f(x)
$$

Equations explicitly depending on u usually (see e.g. Bakelman, require high regularity),

- Regularity extends directly to the weighted Minkowski problem,
- Lack of uniqueness: How can we prescribe an asymptotic cone?

Sketch of the proof

Step 1. Fix a vector $v \in \mathbb{S}^{n}, v^{\perp} \equiv \mathbb{R}^{n}$.

Sketch of the proof

Step 1. Fix a vector $v \in \mathbb{S}^{n}, v^{\perp} \equiv \mathbb{R}^{n}$. Consider the measure

$$
\rho^{\prime}(B):=\int_{B} \sqrt{1+|x|^{2}} d \rho(x)
$$

We lift it as a measure on the sphere through the inverse gnomonic projection

$$
\begin{aligned}
L: & \mathbb{R}^{n} \rightarrow \mathbb{S}_{-}^{n}=\left\{\xi \in \mathbb{S}^{n}: \xi \cdot v<0\right\} \\
& x \mapsto \frac{(x,-1)}{\sqrt{1+|x|^{2}}}
\end{aligned}
$$

Sketch of the proof

Step 1. Fix a vector $v \in \mathbb{S}^{n}, v^{\perp} \equiv \mathbb{R}^{n}$. Consider the measure

$$
\rho^{\prime}(B):=\int_{B} \sqrt{1+|x|^{2}} d \rho(x) .
$$

We lift it as a measure on the sphere through the inverse gnomonic projection

$$
\begin{aligned}
L: & \mathbb{R}^{n} \\
& \rightarrow \mathbb{S}_{-}^{n}=\left\{\xi \in \mathbb{S}^{n}: \xi \cdot v<0\right\} \\
& x
\end{aligned} \frac{(x,-1)}{\sqrt{1+|x|^{2}}} .
$$

We extend the measure by symmetry (here hides the non-uniqueness) \rightarrow by the weighted version of the Minkowski problem, exists K !

Step 2. Consider $\partial K_{-}:=\tau_{K}\left(\mathbb{S}_{-}^{n}\right)$

Step 2. Consider $\partial K_{-}:=\tau_{K}\left(\mathbb{S}_{-}^{n}\right) \rightarrow$ we can define the function

$$
w(x):=\inf \{t: x+t v \in K\}
$$

and the graph of w corresponds to ∂K_{-}.

Step 2. Consider $\partial K_{-}:=\tau_{K}\left(\mathbb{S}_{-}^{n}\right) \rightarrow$ we can define the function

$$
w(x):=\inf \{t: x+t v \in K\}
$$

and the graph of w corresponds to ∂K_{-}.
Finally, we can move "back" to \mathbb{R}^{n} via ∇w, with $u:=w^{*}$ as candidate solution.

Step 2. Consider $\partial K_{-}:=\tau_{K}\left(\mathbb{S}_{-}^{n}\right) \rightarrow$ we can define the function

$$
w(x):=\inf \{t: x+t v \in K\}
$$

and the graph of w corresponds to ∂K_{-}.
Finally, we can move "back" to \mathbb{R}^{n} via ∇w, with $u:=w^{*}$ as candidate solution.

To sum up:

Step 2. Consider $\partial K_{-}:=\tau_{K}\left(\mathbb{S}_{-}^{n}\right) \rightarrow$ we can define the function

$$
w(x):=\inf \{t: x+t v \in K\}
$$

and the graph of w corresponds to ∂K_{-}.
Finally, we can move "back" to \mathbb{R}^{n} via ∇w, with $u:=w^{*}$ as candidate solution.

To sum up:

Core idea: $x=L^{-1} \circ \tau_{K}^{-1} \circ \pi^{-1} \circ \partial u(x)$

Step 3. We have the corresponding changes of variables:

$$
\begin{aligned}
\omega(B, u, c \phi) & =\int_{\partial u(B)} c \phi((x, w(x))) d x=\int_{\pi^{-1} \circ \partial u(B)} \frac{c \phi(y)}{\sqrt{1+|D w(\pi(y))|^{2}}} d \mathcal{H}^{n}(y) \\
& =\int_{\tau_{\kappa}^{-1} \circ \pi^{-1} \circ \partial u(B)}|\xi \cdot v| c_{\mu, K} d S_{K}^{\mu}(\xi)=\int_{L^{-1} \circ \tau_{K}^{-1} \circ \pi^{-1 \circ \partial u(B)}} \frac{1}{\sqrt{1+|z|^{2}}} d \rho^{\prime}(z) \\
& =\int_{L^{-1} \circ \tau_{K}^{-1} \circ \pi^{-1} \circ \partial u(B)} d \rho(z)=\rho(B) .
\end{aligned}
$$

THANKS FOR YOUR ATTENTION!

