The Uniqueness of the Gauss Image Measure

Vadim Semenov

New York University, Courant Institute of Mathematical Sciences
INdAM Meeting Cortona 2023: Convex Geometry - Analytic Aspects
June 26, 2023
\mathcal{K}_{o}^{n} is the set of convex bodies with the center at their interior. ∂K is the boundary of K.
The radial map $r_{K}: S^{n-1} \rightarrow \partial K$ is defined by

$$
\begin{equation*}
r_{K}(u)=r u \in \partial K . \tag{1}
\end{equation*}
$$

By $N(K, x)$, we denote the normal cone of K at $x \in \partial K$, that is the set of all outer unit normals at x :

$$
\begin{equation*}
N(K, x)=\left\{v \in S^{n-1}:(y-x) \cdot v \leq 0 \text { for all } y \in K\right\} \tag{2}
\end{equation*}
$$

We define the radial Gauss image of $\omega \subset S^{n-1}$ as:

$$
\begin{equation*}
\boldsymbol{\alpha}_{K}(\omega)=\bigcup_{x \in r_{K}(\omega)} N(K, x) \subset S^{n-1} \tag{3}
\end{equation*}
$$

The radial Gauss image $\boldsymbol{\alpha}_{K}$ maps sets of S^{n-1} into sets of S^{n-1}.

The radial Gauss Image Map， $\boldsymbol{\alpha}_{K}(\cdot)$ is a set valued map，which is a composition of radial map r_{K} and the multivalued Gauss Map．

Definition (K. J. Böröczky, E. Lutwak, D. Yang, G. Y. Zhang and Y. M. Zhao, 2019)

The Gauss image measure of λ via K, is a measure defined as the pushforward of the λ via map α_{K}. That is for each borel $\omega \subset S^{n-1}$

$$
\begin{equation*}
\lambda\left(\boldsymbol{\alpha}_{K}(\omega)\right)=\lambda(K, \omega) \tag{4}
\end{equation*}
$$

(1) λ is spherical Lebesgue measure $\Longrightarrow \lambda(K, \cdot)$ is Alexandrov's integral curvature
2 λ is Federer's $(n-1)^{\text {th }}$ curvature measure $\Longrightarrow \lambda(K, \cdot)$ is the surface area measure of Alexandrov-Fenchel-Jessen
(3) Dual curvature measures (the dual counterparts of Federer's curvature measures) are also Gauss Image Measures

Question

Given that $\lambda(K, \cdot)=\lambda(L, \cdot)$ what can we say about K and L ?

- λ is spherical Lebesgue measure $\Longrightarrow K=c L$ for some $c>0$ (Aleksandrov)
- λ is absolutely continuous and spt $\lambda=S^{n-1} \Longrightarrow K=c L$ for some $c>0$ (BLYZZ, 2019) (Also Bertrand, from mass transport point of view. Cost function: $-\log (u, v)$.)
spt $\lambda=\left\{v \in S^{n-1} \mid\right.$ for every open neighborhood N_{v} of $\left.v, \lambda\left(N_{v}\right)>0\right\}$

Theorem (From measures to maps, S. 2023)

Suppose $\lambda(K, \cdot), \lambda(L, \cdot)$ are finite Borel measures for Borel measure λ. Then,

$$
\lambda(K, \cdot)=\lambda(L, \cdot)
$$

if and only if $\alpha_{K^{*}}=\alpha_{L^{*}}$ almost everywhere as multivalued maps.
The immediate guess for the definition would be that:

$$
\begin{equation*}
\lambda\left(\left\{v \mid \boldsymbol{\alpha}_{K^{*}}(v) \neq \boldsymbol{\alpha}_{L^{*}}(v)\right\}\right)=0 \tag{5}
\end{equation*}
$$

Yet, this is not the good definition for this class of maps.

Consider two measurable functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ and some measure λ on the domain, then

$$
\begin{gather*}
\lambda(\{x \mid f(x) \neq g(x)\})=0 \\
\Leftrightarrow \tag{6}
\end{gather*}
$$

$$
\forall \omega \text { Borel } \lambda\left(f^{-1}(\omega) \triangle g^{-1}(\omega)\right)=0,
$$

where by triangle we denote the symmetric difference of the sets.

$$
\begin{equation*}
A \triangle B=(A \backslash B) \cup(B \backslash A) \tag{7}
\end{equation*}
$$

Now consider two set-valued functions (similar to that of radial Gauss Image map behaviour) f, g from subsets of \mathbb{R} to subsets of \mathbb{R}

$$
\begin{align*}
& f(\omega)=\bigcup_{x \in \omega}(x-1, x+1) \tag{8}\\
& g(x)=\bigcup_{x \in \omega}[x-1, x+1]
\end{align*}
$$

For these two functions $f(x) \neq g(x)$ at every point x, but yet

$$
\begin{equation*}
\forall \omega \text { Borel } \lambda\left(f^{-1}(\omega) \triangle g^{-1}(\omega)\right)=0, \tag{9}
\end{equation*}
$$

Note that for set valued function we define

$$
\begin{equation*}
f^{-1}(\omega)=\{x \mid f(x) \cap \omega \neq \varnothing\} \tag{10}
\end{equation*}
$$

In other words, we care about two set-valued functions mapping to roughly the same sets for a given point rather than mapping exactly the same for almost everywhere point.

Definition (S. 2023)

Two set valued functions are equal almost everywhere with respect to measure λ if for any ω Borel:

$$
\begin{equation*}
\lambda\left(f^{-1}(\omega) \triangle g^{-1}(\omega)\right)=0 \tag{11}
\end{equation*}
$$

Alternatively, one can think about this in terms of symmetric difference pseudo metric space (The Nikodym Metric Space)

Class of functions

The large class of set-valued functions are subdifferential (subderivative) of convex functions!

In fact, one can view the inverse Gauss Image maps of bodies K and L as the gradient of the support functions of convex bodies K and L.

Theorem (From measures to maps, S. 2023)

Suppose $\lambda(K, \cdot), \lambda(L, \cdot)$ are finite Borel measures for Borel measure λ. Then,

$$
\lambda(K, \cdot)=\lambda(L, \cdot)
$$

if and only if $\boldsymbol{\alpha}_{K^{*}}=\boldsymbol{\alpha}_{L^{*}}$ almost everywhere as multivalued maps, that is

$$
\begin{equation*}
\forall \omega \subset S^{n-1} \text { Borel sets } \lambda\left(\boldsymbol{\alpha}_{K}(\omega) \triangle \boldsymbol{\alpha}_{L}(\omega)\right)=0 \tag{12}
\end{equation*}
$$

Is the same as saying
$\forall \omega$ Borel sets $\lambda\left(\boldsymbol{\alpha}_{K}(\omega)\right)=\lambda\left(\boldsymbol{\alpha}_{L}(\omega)\right)$.

$$
\begin{equation*}
\Leftrightarrow \tag{13}
\end{equation*}
$$

$\forall \omega$ Borel sets $\boldsymbol{\alpha}_{K}(\omega)=\boldsymbol{\alpha}_{L}(\omega)$ up to a λ measure zero set.
This is quite special behavior of radial Gauss Image maps. For example, take λ to be uniform measure and rotations of the sphere instead of α_{K} and α_{L}.

Theorem (From measure theory to continuity, S. 2023)

Let $K, L \in \mathcal{K}_{0}^{n}$. Suppose $\lambda(K, \cdot)=\lambda(L, \cdot)$ are finite Borel measures for a spherical submeasure λ. Then, given $u \in \operatorname{spt} \lambda$,

$$
\begin{equation*}
\boldsymbol{\alpha}_{K^{*}, L^{*}}(u):=\boldsymbol{\alpha}_{K^{*}}(u) \cap \boldsymbol{\alpha}_{L^{*}}(u) \neq \varnothing \tag{14}
\end{equation*}
$$

In particular, $\boldsymbol{\alpha}_{K^{*}, L^{*}}$ defined on spt λ is a continuous map. That is, for any $\varepsilon>0$ there exist $\delta>0$ such that for any $u \in \operatorname{spt} \lambda$

$$
\begin{equation*}
\boldsymbol{\alpha}_{K^{*}, L^{*}}\left(u_{\delta}\right) \subset \boldsymbol{\alpha}_{K^{*}, L^{*}}(u)_{\varepsilon} . \tag{15}
\end{equation*}
$$

where for $\omega \subset S^{n-1}$ we define its outer parallel set ω_{α} to be

$$
\begin{equation*}
\omega_{\alpha}=\bigcup_{u \in \omega}\left\{v \in S^{n-1}: u \cdot v>\cos \alpha\right\} \tag{16}
\end{equation*}
$$

Given $f, g: \mathbb{R}^{2} \rightarrow \mathbb{R}$, let $\gamma(t):[0,1] \rightarrow \mathbb{R}^{2}$ be a path of finite length. Let ∂f and ∂g be subdifferentials for f and g (on \mathbb{R}^{2}). Then,

$$
\begin{aligned}
& \text { If } \forall t \text { we have } \partial f(\gamma(t)) \cap \partial g(\gamma(t)) \neq \varnothing \\
& \Rightarrow \\
& f(\gamma(t))=g(\gamma(t))+c
\end{aligned}
$$

$$
\begin{gather*}
\boldsymbol{\alpha}_{K^{*}, L^{*}}(u):=\boldsymbol{\alpha}_{K^{*}}(u) \cap \boldsymbol{\alpha}_{L^{*}}(u) \neq \varnothing \text { for } u \in \operatorname{spt} \lambda \tag{18}\\
\boldsymbol{\alpha}_{K^{*}, L^{*}}\left(u_{\delta}\right) \subset \boldsymbol{\alpha}_{K^{*}, L^{*}}(u)_{\varepsilon} \text { for } u \in \operatorname{spt} \lambda \tag{19}
\end{gather*}
$$

We obtain the following:

Theorem (From α_{K} and α_{L} to K and $L, S .2023$)

Let $K, L \in \mathcal{K}_{o}^{n}$. Suppose $\lambda(K, \cdot)=\lambda(L, \cdot)$ are finite Borel measures for a spherical measure λ, defined on the Lebesgue measurable subsets of S^{n-1}. Then on each rectifiable path connected component $D \subset s p t \lambda, K^{*}$ and L^{*} are are equal up to a dilation. Alternatively, for each $v_{1}, v_{2} \in D$ we have

$$
\begin{equation*}
\frac{h_{K}\left(v_{1}\right)}{h_{L}\left(v_{1}\right)}=\frac{h_{K}\left(v_{2}\right)}{h_{L}\left(v_{2}\right)} \tag{20}
\end{equation*}
$$

where by h_{K} and h_{L} we denote the support functions of K and L.
In particular, one can think about this in terms of tangential bodies.

Given C^{1} function $f, g:[0,1] \rightarrow \mathbb{R}$

$$
\begin{equation*}
f^{\prime}=g^{\prime} \Rightarrow f=g+c \tag{21}
\end{equation*}
$$

This is MVT. Yet, this doesn't generalize to higher dimensions, in naive approach:

In 1935 , Whitney constructed a C^{1} function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ with $\nabla f=0$ on a curve $D \subset \mathbb{R}^{2}$ such that f is not constant on D.

The caviat being, that the curve is a fractal, and has an infinite length.

Question

Can one construct two convex functions $f, g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and some curve $D \subset \mathbb{R}^{2}$ such that $\partial f=\partial g$ on this curve and, yet, $f \neq g+c$?

Theorem (From α_{K} and α_{L} to K and L, S. 2023)

Let $K, L \in \mathcal{K}_{0}^{n}$. Suppose $\lambda(K, \cdot)=\lambda(L, \cdot)$ are finite Borel measures for a spherical measure λ, defined on the Lebesgue measurable subsets of S^{n-1}. Then on each rectifiable path connected component $D \subset s p t \lambda, K^{*}$ and L^{*} are are equal up to a dilation. Alternatively, for each $v_{1}, v_{2} \in D$ we have

$$
\begin{equation*}
\frac{h_{K}\left(v_{1}\right)}{h_{L}\left(v_{1}\right)}=\frac{h_{K}\left(v_{2}\right)}{h_{L}\left(v_{2}\right)} \tag{22}
\end{equation*}
$$

where by h_{K} and h_{L} we denote the support functions of K and L.

Now, in the remaining time we will address the most crucial part of the proof of the first statement:

Theorem (From measures to maps, S. 2023)

Suppose $\lambda(K, \cdot), \lambda(L, \cdot)$ are finite Borel measures for Borel measure λ. Then,

$$
\lambda(K, \cdot)=\lambda(L, \cdot)
$$

if and only if $\boldsymbol{\alpha}_{K^{*}}=\boldsymbol{\alpha}_{L^{*}}$ almost everywhere as multivalued maps, that is

$$
\begin{equation*}
\forall \omega \subset S^{n-1} \text { Borel sets } \lambda\left(\boldsymbol{\alpha}_{K}(\omega) \triangle \boldsymbol{\alpha}_{L}(\omega)\right)=0 \tag{23}
\end{equation*}
$$

Definition

Given $t \in[0,1]$ we define the harmonic mean of $K, L \in \mathcal{K}_{o}^{n}$ as

$$
\begin{equation*}
K \hat{+} t L:=\left((1-t) K^{*}+t L^{*}\right)^{*} . \tag{24}
\end{equation*}
$$

Using this, the essential ingredient in the proof of main Theorem is to show that

$$
\boldsymbol{\alpha}_{K}(\gamma) \triangle \boldsymbol{\alpha}_{L}(\gamma) \backslash\left(\boldsymbol{\alpha}_{K}(\partial \gamma) \cup \boldsymbol{\alpha}_{L}(\partial \gamma)\right) \subset \bigcup_{0<t<1} \boldsymbol{\alpha}_{K \hat{\gamma}, L}(\partial \gamma)
$$

Proposition (S. 2023)
Given $u \in S^{n-1}, \boldsymbol{\alpha}_{K \hat{+}+L}(u)$ is a variation from $\boldsymbol{\alpha}_{K}(u)$ to $\boldsymbol{\alpha}_{L}(u)$ along geodesic segments on S^{n-1}.

When K, L are C^{1} strictly convex bodies $\boldsymbol{\alpha}_{K}, \boldsymbol{\alpha}_{L}$ is a homeomorphism of S^{n-1} to S^{n-1}. Then, for the previous equation it is sufficient to establish:

$$
\begin{equation*}
\boldsymbol{\alpha}_{K}(\gamma) \triangle \boldsymbol{\alpha}_{L}(\gamma) \subset \bigcup_{0 \leq t \leq 1} \boldsymbol{\alpha}_{K \hat{+}, L}(\partial \gamma) \tag{25}
\end{equation*}
$$

In this case, notice that $\alpha_{\kappa \hat{+}, L}: \gamma \times[0,1] \rightarrow S^{n-1}$ defines a homotopy of homeomorphisms $\boldsymbol{\alpha}_{K}$ and $\boldsymbol{\alpha}_{\llcorner }$.

$$
\begin{equation*}
\boldsymbol{\alpha}_{K}(\gamma) \triangle \boldsymbol{\alpha}_{L}(\gamma) \subset \bigcup_{0 \leq t \leq 1} \boldsymbol{\alpha}_{\kappa \hat{\gamma}_{t} L}(\partial \gamma) . \tag{26}
\end{equation*}
$$

In C^{1} strictly convex case, (27) reduces to the following geometric picture:

$\alpha_{k f_{t}}$ is a homotopg of $\alpha_{k} \&$ α_{L}.

$$
\begin{aligned}
& \gamma \times[0,1] \\
& n \\
& \rho^{n-1}
\end{aligned}
$$

$$
\begin{equation*}
x \in \bigcup_{0 \leq t \leq 1} \boldsymbol{\alpha}_{K \hat{\gamma}_{t} L}(\partial \gamma) \backslash \boldsymbol{\alpha}_{K}(\gamma) \triangle \boldsymbol{\alpha}_{L}(\gamma) . \tag{27}
\end{equation*}
$$

If there exist such x, we can define a projection P onto sphere S centered at point x. Then $P \circ \boldsymbol{\alpha}_{K}(\partial \gamma)$ covers the sphere (degree of $P \circ \boldsymbol{\alpha}_{K}(\partial \gamma)$ is ≥ 1), yet degree of $P \circ \boldsymbol{\alpha}_{L}(\partial \gamma)$ is zero, so $\alpha_{K}(\partial \gamma)$ is not homotopic to $\alpha_{L}(\partial \gamma)$ by Hopf Theorem.

But in general, map α_{K} is more difficult:

Proposition (S. 2023)

Given any $\omega \subset S^{n-1}, \alpha_{K \hat{f}_{t} L}(\omega):[0,1] \rightarrow S^{n-1}$ is Lipschitz continuous map from t to sets on sphere equipped with Hausdorff distance d_{H} :

$$
\begin{equation*}
d_{H}\left(\boldsymbol{\alpha}_{K \hat{t}_{1}} L(\omega), \boldsymbol{\alpha}_{K \hat{t}_{t_{2}}}(\omega)\right) \leq 2 \max \left(\frac{R_{K}}{r_{K}}, \frac{R_{L}}{r_{L}}\right) \max \left(\frac{R_{K}}{r_{L}}, \frac{R_{L}}{r_{K}}\right)\left|t_{1}-t_{2}\right| . \tag{28}
\end{equation*}
$$

Using this Proposition, using continuity arguments we manage to show that the same result holds:

$$
\begin{equation*}
\boldsymbol{\alpha}_{K}(\gamma) \triangle \boldsymbol{\alpha}_{L}(\gamma) \backslash\left(\boldsymbol{\alpha}_{K}(\partial \gamma) \cup \boldsymbol{\alpha}_{L}(\partial \gamma)\right) \subset \bigcup_{0<t<1} \boldsymbol{\alpha}_{K \hat{\gamma_{t}}}(\partial \gamma) \tag{29}
\end{equation*}
$$

Thank you!

