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Kn
o is the set of convex bodies with the center at their interior.

∂K is the boundary of K .
The radial map rK : Sn−1 → ∂K is defined by

rK(u) = ru ∈ ∂K . (1)

By N(K , x), we denote the normal cone of K at x ∈ ∂K , that is the set
of all outer unit normals at x:

N(K , x) = {v ∈ Sn−1 : (y − x) · v ≤ 0 for all y ∈ K}. (2)

We define the radial Gauss image of ω ⊂ Sn−1 as:

αααK(ω) =
!

x∈rK (ω)
N(K , x) ⊂ Sn−1. (3)

The radial Gauss image αααK maps sets of Sn−1 into sets of Sn−1.
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The radial Gauss Image Map, αααK(·) is a set valued map, which is a
composition of radial map rK and the multivalued Gauss Map.
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Definition (K. J. Böröczky, E. Lutwak, D. Yang, G. Y. Zhang and
Y. M. Zhao, 2019)
The Gauss image measure of λ via K , is a measure defined as the
pushforward of the λ via map αααK . That is for each borel ω ⊂ Sn−1

λ(αααK(ω)) = λ(K ,ω) (4)

1 λ is spherical Lebesgue measure =⇒ λ(K , ·) is Alexandrov’s
integral curvature

2 λ is Federer’s (n− 1)th curvature measure =⇒ λ(K , ·) is the
surface area measure of Alexandrov-Fenchel-Jessen

3 Dual curvature measures (the dual counterparts of Federer’s
curvature measures) are also Gauss Image Measures
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Question
Given that λ(K , ·) = λ(L, ·) what can we say about K and L?

• λ is spherical Lebesgue measure =⇒ K = cL for some c > 0
(Aleksandrov)

• λ is absolutely continuous and sptλ = Sn−1 =⇒ K = cL for
some c > 0 (BLYZZ, 2019) (Also Bertrand, from mass transport
point of view. Cost function: − log(u, v). )

sptλ = {v ∈ Sn−1 | for every open neighborhood Nv of v, λ(Nv) > 0}
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Theorem (From measures to maps, S. 2023)
Suppose λ(K , ·),λ(L, ·) are finite Borel measures for Borel measure λ.
Then,

λ(K , ·) = λ(L, ·)

if and only if αααK∗ = αααL∗ almost everywhere as multivalued maps.

The immediate guess for the definition would be that:

λ({v | αααK∗(v) ∕= αααL∗(v)}) = 0 (5)

Yet, this is not the good definition for this class of maps.
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Consider two measurable functions f , g : R → R and some measure
λ on the domain, then

λ({x | f (x) ∕= g(x)}) = 0
⇔

∀ω Borel λ(f−1(ω)△g−1(ω)) = 0,
(6)

where by triangle we denote the symmetric difference of the sets.

A△B = (A \ B) ∪ (B \ A) (7)
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Now consider two set-valued functions (similar to that of radial
Gauss Image map behaviour) f , g from subsets of R to subsets of R

f (ω) =
!

x∈ω
(x − 1, x + 1)

g(x) =
!

x∈ω
[x − 1, x + 1]

(8)

For these two functions f (x) ∕= g(x) at every point x, but yet

∀ω Borel λ(f−1(ω)△g−1(ω)) = 0, (9)

Note that for set valued function we define

f−1(ω) = {x | f (x) ∩ ω ∕= ∅} (10)
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In other words, we care about two set-valued functionsmapping to
roughly the same sets for a given point rather thanmapping exactly
the same for almost everywhere point.

Definition (S. 2023)
Two set valued functions are equal almost everywhere with respect
to measure λ if for any ω Borel:

λ(f−1(ω)△g−1(ω)) = 0 (11)

Alternatively, one can think about this in terms of symmetric
difference pseudo metric space (The Nikodym Metric Space)
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Class of functions
The large class of set-valued functions are subdifferential
(subderivative) of convex functions!

In fact, one can view the inverse Gauss Image maps of bodies K and
L as the gradient of the support functions of convex bodies K and L.
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Theorem (From measures to maps, S. 2023)
Suppose λ(K , ·),λ(L, ·) are finite Borel measures for Borel measure λ.
Then,

λ(K , ·) = λ(L, ·)

if and only if αααK∗ = αααL∗ almost everywhere asmultivalued maps, that
is

∀ω ⊂ Sn−1 Borel sets λ(αααK(ω)△αααL(ω)) = 0. (12)

Is the same as saying

∀ω Borel sets λ(αααK(ω)) = λ(αααL(ω)).

⇔
∀ω Borel sets αααK(ω) = αααL(ω) up to a λmeasure zero set.

(13)

This is quite special behavior of radial Gauss Image maps. For
example, take λ to be uniform measure and rotations of the sphere
instead of αααK and αααL.
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Theorem (From measure theory to continuity, S. 2023)
Let K , L ∈ Kn

o. Suppose λ(K , ·) = λ(L, ·) are finite Borel measures for a
spherical submeasure λ. Then, given u ∈ sptλ,

αααK∗,L∗(u) := αααK∗(u) ∩αααL∗(u) ∕= ∅ (14)

In particular, αααK∗,L∗ defined on sptλ is a continuous map. That is, for
any ε > 0 there exist δ > 0 such that for any u ∈ sptλ

αααK∗,L∗(uδ) ⊂ αααK∗,L∗(u)ε. (15)

where for ω ⊂ Sn−1 we define its outer parallel set ωα to be

ωα =
!

u∈ω
{v ∈ Sn−1 : u · v > cosα}. (16)
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Given f , g : R2 → R, let γ(t) : [0,1] → R2 be a path of finite length.
Let ∂f and ∂g be subdifferentials for f and g (on R2). Then,

If ∀t we have ∂f (γ(t)) ∩ ∂g(γ(t)) ∕= ∅
⇒

f (γ(t)) = g(γ(t)) + c
(17)
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αααK∗,L∗(u) := αααK∗(u) ∩αααL∗(u) ∕= ∅ for u ∈ sptλ (18)

αααK∗,L∗(uδ) ⊂ αααK∗,L∗(u)ε for u ∈ sptλ (19)

We obtain the following:

Theorem (From αK and αL to K and L, S. 2023)
Let K , L ∈ Kn

o. Suppose λ(K , ·) = λ(L, ·) are finite Borel measures for a
spherical measure λ, defined on the Lebesgue measurable subsets of
Sn−1. Then on each rectifiable path connected component D ⊂ sptλ, K∗

and L∗ are are equal up to a dilation. Alternatively, for each v1, v2 ∈ D
we have

hK(v1)
hL(v1)

=
hK(v2)
hL(v2)

, (20)

where by hK and hL we denote the support functions of K and L.

In particular, one can think about this in terms of tangential bodies.
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Given C1 function f , g : [0,1] → R

f ′ = g′ ⇒ f = g + c (21)

This is MVT. Yet, this doesn’t generalize to higher dimensions, in
naive approach:

In 1935, Whitney constructed a C1 function f : R2 → R with ∇f = 0
on a curve D ⊂ R2 such that f is not constant on D.
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The caviat being, that the curve is a fractal, and has an infinite
length.

Question
Can one construct two convex functions f , g : R2 → R and some
curve D ⊂ R2 such that ∂f = ∂g on this curve and, yet, f ∕= g + c?

Theorem (From αK and αL to K and L, S. 2023)
Let K , L ∈ Kn

o. Suppose λ(K , ·) = λ(L, ·) are finite Borel measures for a
spherical measure λ, defined on the Lebesgue measurable subsets of
Sn−1. Then on each rectifiable path connected component D ⊂ sptλ, K∗

and L∗ are are equal up to a dilation. Alternatively, for each v1, v2 ∈ D
we have

hK(v1)
hL(v1)

=
hK(v2)
hL(v2)

, (22)

where by hK and hL we denote the support functions of K and L.
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Now, in the remaining time we will address the most crucial part of
the proof of the first statement:

Theorem (From measures to maps, S. 2023)
Suppose λ(K , ·),λ(L, ·) are finite Borel measures for Borel measure λ.
Then,

λ(K , ·) = λ(L, ·)

if and only if αααK∗ = αααL∗ almost everywhere asmultivalued maps, that
is

∀ω ⊂ Sn−1 Borel sets λ(αααK(ω)△αααL(ω)) = 0. (23)
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Definition

Given t ∈ [0,1] we define the harmonic mean of K , L ∈ Kn
o as

K+̂tL := ((1− t)K∗ + tL∗)∗. (24)

Using this, the essential ingredient in the proof of main Theorem is
to show that

αααK(γ)△αααL(γ) \
"
αααK(∂γ) ∪αααL(∂γ)

#
⊂

!

0<t<1

αααK+̂tL(∂γ)

Vadim Semenov (NYU Courant) Uniq. of GIM 18 / 25



Proposition (S. 2023)
Given u ∈ Sn−1, αααK+̂tL(u) is a variation from αααK(u) to αααL(u) along
geodesic segments on Sn−1.
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When K , L are C1 strictly convex bodies αααK ,αααL is a homeomorphism
of Sn−1 to Sn−1. Then, for the previous equation it is sufficient to
establish:

αααK(γ)△αααL(γ) ⊂
!

0≤t≤1
αααK+̂tL(∂γ). (25)

In this case, notice that αααK+̂·L : γ × [0,1] → Sn−1 defines a homotopy
of homeomorphisms αααK and αααL.
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αααK(γ)△αααL(γ) ⊂
!

0≤t≤1
αααK+̂tL(∂γ). (26)

In C1 strictly convex case, (27) reduces to the following geometric
picture:
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x ∈
!

0≤t≤1
αααK+̂tL(∂γ) \αααK(γ)△αααL(γ). (27)

If there exist such x, we can define a projection P onto sphere S
centered at point x. Then P ◦αααK(∂γ) covers the sphere (degree of
P ◦αααK(∂γ) is ≥ 1), yet degree of P ◦αααL(∂γ) is zero, so αK(∂γ) is not
homotopic to αL(∂γ) by Hopf Theorem.
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But in general, map αK is more difficult:
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Proposition (S. 2023)
Given any ω ⊂ Sn−1, αααK+̂tL(ω) : [0,1] → Sn−1 is Lipschitz continuous
map from t to sets on sphere equipped with Hausdorff distance dH:

dH(αααK+̂t1L
(ω),αααK+̂t2L

(ω)) ≤ 2max(
RK
rK

,
RL
rL
)max(

RK
rL

,
RL
rK

)|t1 − t2|. (28)

Using this Proposition, using continuity arguments we manage to
show that the same result holds:

αααK(γ)△αααL(γ) \
"
αααK(∂γ) ∪αααL(∂γ)

#
⊂

!

0<t<1

αααK+̂tL(∂γ) (29)
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Thank you!


