Expected valuations of random zonotopes

Rolf Schneider

U Freiburg

Convex Geometry - Analytic Aspects
Cortona, June 25 - June 30, 2023

Let X_{1}, \ldots, X_{n} be stochastically independent, identically distributed random points in \mathbb{R}^{d}.

There is a huge literature about the convex hull of X_{1}, \ldots, X_{n}.
Instead, we propose to consider the Minkowski sum of the segments $\bar{X}_{1}, \ldots, \bar{X}_{n}$, where

$$
\bar{x}:=[o, x]:=\operatorname{conv}\{0, x\} \quad \text { for } x \in \mathbb{R}^{d} .
$$

The sum $\bar{X}_{1}+\cdots+\bar{X}_{n}$ is a random zonotope.
A picture of a zonotope:

Our starting point is a result of Richard A. Vitale (1991):

Theorem. Let X be a random vector in \mathbb{R}^{d} with $\mathbb{E}\|X\|<\infty$. Let M_{X} be a $d \times d$ matrix whose columns are i.i.d. copies of X. Then

$$
\mathbb{E}\left|\operatorname{det} M_{X}\right|=d!V_{d}\left(Z_{X}\right)
$$

where Z_{X} is the selection expectation of \bar{X}.
($V_{d}=$ volume in \mathbb{R}^{d}).

Explanation

(e.g., Molchanov, Theory of Random Sets (2005))

The selection expectation of an integrably bounded random closed set is the closure of the set of all expectations of integrable selections of the set.

Fortunately, in our case, Z_{X} is a convex body, and the support functions satisfy

$$
h\left(Z_{x}, u\right)=\mathbb{E} h(\bar{X}, u)=\int_{\mathbb{R}^{d}} h(\bar{x}, u) \mathbb{P}_{x}(\mathrm{~d} x) \quad \text { for } u \in \mathbb{R}^{d}
$$

where \mathbb{P}_{X} is the distribution of X.
Thus, Z_{X} can be approximated by finite sums of segments and hence is a zonoid.

Vitale's result can be interpreted geometrically:
Since the absolute determinant of a quadratic matrix is the volume of a parallelepiped, we have

$$
\mathbb{E} V_{d}\left(\bar{X}_{1}+\cdots+\bar{X}_{d}\right)=d!V_{d}\left(Z_{X}\right)
$$

if X_{1}, \ldots, X_{d} are i.i.d. copies of X.
This calls for generalizations.
(1) Can it be extended to more than d summands? Yes.
(2) Can the volume be replaced by an intrinsic volume? Yes.
(3) Can the intrinsic volume $V\left(K[j], B^{d}[d-j]\right)$ be replaced by a mixed volume $V\left(K[j], C_{1}, \ldots, C_{d-j}\right)$ (with fixed $\left.C_{1}, \ldots, C_{d-j}\right)$?

Also here, the answer is Yes.
But now, a theorem of Alesker (2001), proving a conjecture of McMullen (1980), comes to mind:

The functionals $K \mapsto V\left(K[j], C_{1}, \ldots, C_{d-j}\right), C_{1}, \ldots, C_{d-j} \in \mathcal{K}^{d}$, are dense in Val_{j}, the space of translation invariant, continuous, j-homogeneous valuations on the convex bodies in \mathbb{R}^{d}.

Can this be used to extend the result to Val_{j} ?
Yes, but fortunately a more elementary approach is possible.
We have the following result:

Theorem. Let X be a random vector in \mathbb{R}^{d} with $\mathbb{E}\|X\|<\infty$. Use its distribution \mathbb{P}_{X} to define a deterministic zonoid Z_{X} with support function

$$
h\left(\mathrm{Z}_{X}, \cdot\right)=\int_{\mathbb{R}^{d}} h(\bar{x}, \cdot) \mathbb{P}_{X}(\mathrm{~d} x) .
$$

Let X_{1}, \ldots, X_{n}, with $n \geq j \in\{1, \ldots, d\}$, be i.i.d. copies of X, and define the random zonotope

$$
Z_{n}:=\frac{1}{n}\left(\bar{X}_{1}+\cdots+\bar{X}_{n}\right) .
$$

If $\varphi \in \mathbf{V a l}_{j}$, then

$$
\mathbb{E} \varphi\left(Z_{n}\right)=\frac{n!}{n^{i}(n-j)!} \varphi\left(Z_{X}\right) .
$$

The essential steps of the proof

(1) A polynomiality result of McMullen (1974):

There exists a symmetric mapping $\Phi:\left(\mathcal{K}^{d}\right)^{j} \rightarrow \mathbb{R}$, continuous, translation invariant, Minkowski additive in each variable, such that

$$
\begin{aligned}
& \varphi\left(\lambda_{1} K_{1}+\cdots+\lambda_{n} K_{n}\right) \\
& =\sum_{r_{1}, \ldots, r_{n}=0}^{j}\binom{j}{r_{1} \ldots r_{n}} \lambda_{1}^{r_{1}} \cdots \lambda_{n}^{r_{n}} \Phi\left(K_{1}\left[r_{1}\right], \ldots, K_{n}\left[r_{n}\right]\right)
\end{aligned}
$$

(2) The fact that $\varphi(K)=0$ if $\operatorname{dim} K<j$ leads to a simplification for segments, namely

$$
\varphi\left(\bar{x}_{1}+\cdots+\bar{x}_{n}\right)=j!\sum_{1 \leq i_{1}<\cdots<i_{j} \leq n} \Phi\left(\bar{x}_{i_{1}}, \ldots, \bar{x}_{i_{j}}\right)
$$

(3) Let $j \leq n \leq k$ (think of large k). Then (2) leads to

$$
\varphi\left(\bar{x}_{1}+\cdots+\bar{x}_{k}\right)=\binom{k-j}{n-j}^{-1} \sum_{1 \leq i_{1}<\cdots<i_{n} \leq k} \varphi\left(\bar{x}_{i_{1}}+\cdots+\bar{x}_{i_{n}}\right)
$$

(4) With $Z_{k}:=\frac{1}{k}\left(\bar{X}_{1}+\cdots+\bar{X}_{k}\right)$ we get

$$
\varphi\left(Z_{k}\right)=\frac{1}{k^{j}}\binom{k-j}{n-j}^{-1}\binom{k}{n} U_{k}^{(n)}(h)
$$

with the U-statistic

$$
U_{k}^{(n)}(h):=\binom{k}{n}^{-1} \sum_{1 \leq i_{1}<\cdots<i_{n} \leq k} h\left(X_{i_{1}}, \ldots, X_{i_{n}}\right)
$$

of order n with kernel function

$$
h\left(x_{1}, \ldots, x_{n}\right):=\varphi\left(\bar{x}_{1}+\cdots+\bar{x}_{n}\right), \quad x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}
$$

(5) The strong law for U-statistics by Hoeffding (1961) says that

$$
\lim _{k \rightarrow \infty} U_{k}^{(n)}(h)=\mathbb{E} h\left(X_{1}, \ldots, X_{n}\right) \quad \text { almost surely }
$$

hence

$$
\lim _{k \rightarrow \infty} \varphi\left(Z_{k}\right)=\frac{(n-j)!}{n!} n^{j} \mathbb{E} \varphi\left(Z_{n}\right) \quad \text { a.s. }
$$

(6) The strong law for random sets by Artstein and Vitale (1975) says that

$$
\lim _{k \rightarrow \infty} Z_{k}=\mathbb{E} \bar{X}=Z_{X} \quad \text { a.s. }
$$

in the Hausdorff metric, hence (using that φ is continuous)

$$
\lim _{k \rightarrow \infty} \varphi\left(Z_{k}\right)=\varphi\left(Z_{X}\right) \quad \text { a.s. }
$$

(7) From (5) and (6) together,

$$
\frac{(n-j)!}{n!} n^{j} \mathbb{E} \varphi\left(Z_{n}\right)=\lim _{k \rightarrow \infty} \varphi\left(Z_{k}\right)=\varphi\left(Z_{X}\right) \Rightarrow \text { Assertion. }
$$

A central limit theorem

Recall the U-statistic of order j with kernel h, for a random sample $\left(X_{1}, \ldots, X_{n}\right)$ of size $n \geq j$,

$$
U_{n}^{(j)}(h)=\binom{n}{j}^{-1} \sum_{1 \leq i_{1}<\cdots<i_{j} \leq n} h\left(X_{i_{1}}, \ldots, X_{i_{j}}\right)
$$

There is a central limit theorem for U-statistics, by Hoeffding (1948). It requires two conditions:
(a) $\mathbb{E} h^{2}\left(X_{1}, \ldots, X_{j}\right)<\infty$,
(b) $\zeta_{1}>0$, where

$$
\begin{gathered}
\zeta_{1}:=\mathbb{E} \widetilde{h}_{1}^{2}(X), \quad \widetilde{h}_{1}:=h_{1}-\theta, \\
h_{1}(x):=\mathbb{E} h\left(x, X_{2}, \ldots, X_{j}\right), \quad \theta:=\mathbb{E} h\left(X_{1}, \ldots, X_{j}\right) .
\end{gathered}
$$

Under these assumptions, the central limit theorem says that, as $n \rightarrow \infty$,

$$
\sqrt{n}\left(U_{n}^{(j)}(h)-\theta\right) \xrightarrow{d} \mathcal{N}\left(0, j^{2} \zeta_{1}\right),
$$

where $\mathcal{N}\left(0, j^{2} \zeta_{1}\right)$ is a normally distributed random variable with expectation 0 and variance $j^{2} \zeta_{1}$.

Let's see how the assumptions (a) and (b) can be satisfied in our special case.

Here we have

$$
h\left(x_{1}, \ldots, x_{n}\right)=\varphi\left(\bar{x}_{1}+\cdots+\bar{x}_{n}\right), \quad x_{1}, \ldots, x_{n} \in \mathbb{R}^{d} .
$$

(a) We need $\mathbb{E} h^{2}\left(X_{1}, \ldots, X_{j}\right)<\infty$.

Write $\bar{X}=\|X\| s$, where s is a random segment with endpoints o and a unit vector.
For $n=j$, the previous simplification gives

$$
\varphi\left(\bar{x}_{1}+\cdots+\bar{x}_{j}\right)=j!\Phi\left(\bar{x}_{1}, \ldots, \bar{x}_{j}\right),
$$

hence

$$
h\left(X_{1}, \ldots, j\right)=j!\Phi\left(\bar{X}_{1}, \ldots, \bar{X}_{j}\right)=j!\left\|X_{1}\right\| \cdots\left\|X_{j}\right\| \Phi\left(s_{1}, \ldots, s_{j}\right),
$$

Here it was used that Φ is Minkowski linear in each variable. It follows that

$$
\mathbb{E} h^{2}\left(X_{1}, \ldots, X_{j}\right)=(j!)^{2} \mathbb{E}\left[\left\|X_{1}\right\| \cdots\left\|X_{j}\right\| \Phi\left(s_{1}, \ldots, s_{j}\right)\right]^{2}<\infty
$$

if $\mathbb{E}\|X\|^{2}<\infty$, since Φ is continuous and hence attains a maximum on a compact set of convex bodies.
(b) We need $\zeta_{1}>0$.

First, we have

$$
\theta=\mathbb{E} h\left(X_{1}, \ldots, X_{j}\right)=\mathbb{E} \varphi\left(\bar{X}_{1}+\cdots+\bar{X}_{j}\right)=j^{j} \mathbb{E} \varphi\left(Z_{j}\right)=\varphi\left(Z_{X}\right)
$$

by our first theorem.
Second, for $x \in \mathbb{R}^{d}$ we have

$$
h_{1}(x)=\mathbb{E} h\left(x, \bar{X}_{2} \ldots, \bar{X}_{j}\right)=\mathbb{E} \varphi\left(\bar{x}+\bar{X}_{2}+\cdots+\bar{X}_{j}\right)
$$

We define a random zonotope $Z_{n}(x)$ by

$$
Z_{n}(x):=\bar{x}+\frac{1}{n}\left(\bar{X}_{2}+\cdots+\bar{X}_{n}\right) \stackrel{d}{=} \bar{x}+\frac{n-1}{n} Z_{n-1}
$$

Then, with probability one (by Artstein-Vitale) $Z_{n}(x) \rightarrow x+Z_{X}$ as $\rightarrow \infty$.

Thus,

$$
\lim _{n \rightarrow \infty} \varphi\left(Z_{n}(x)\right)=\varphi\left(x+Z_{X}\right) \quad \text { a.s. }
$$

From a previous identity, together with properties of Φ, we obtain

$$
\varphi\left(Z_{n}(x)\right)=\frac{1}{n^{j-1}}\binom{n-1}{j-1} U_{n-1}^{(j-1)}\left(g_{x}\right)+\frac{1}{n^{j}} U_{n-1}^{(j)}(h)
$$

with $g_{x}\left(x_{2}, \ldots, x_{j}\right):=\varphi\left(\bar{x}+\bar{x}_{2}+\cdots+\bar{x}_{j}\right)$.
The strong law for U-statistics gives that, with probability one,
$\lim _{n \rightarrow \infty} \varphi\left(Z_{n}(x)\right)=\frac{1}{(j-1)!} \mathbb{E} \varphi\left(\bar{x}_{2}+\cdots+\bar{x}_{j}\right)+\frac{1}{j!} \mathbb{E} \varphi\left(\bar{x}_{1}+\cdots+\bar{x}_{j}\right)$.

Both limit theorems together give

$$
h_{1}(x)=(j-1)!\left[\varphi\left(\bar{x}+Z_{X}\right)-\varphi\left(Z_{X}\right)\right]
$$

Recall that

$$
\zeta_{1}=\mathbb{E}\left[h_{1}(X)-\theta\right]^{2}
$$

Hence, to achieve that $\zeta_{1}>0$, we need assumptions to ensure that NOT

$$
\varphi\left(x+Z_{X}\right)=(j+1) \varphi\left(Z_{X}\right) \quad \text { for all } x \in \operatorname{supp} \mathbb{P}_{X}
$$

Hence, we assume the following:
(1) $\mathbb{E}\|X\|^{2}<\infty$,
(2) The support of \mathbb{P}_{X} contains o and is not contained in some ($j-1$)-dimensional linear subspace,
(3) $\varphi(K) \neq 0$ if $\operatorname{dim} K \geq j$.

Theorem. Under these assumptions, as $n \rightarrow \infty$,

$$
\sqrt{n}\left(\varphi\left(Z_{n}\right)-\varphi\left(Z_{x}\right)\right) \xrightarrow{d} \mathcal{N}\left(0,(j!j)^{2} \zeta_{1}\right) .
$$

Thank you for your attention!

