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Let X1, . . . ,Xn be stochastically independent, identically
distributed random points in Rd .

There is a huge literature about the convex hull of X1, . . . ,Xn.

Instead, we propose to consider the Minkowski sum of the
segments X̄1, . . . , X̄n, where

x̄ := [o, x ] := conv{o, x} for x ∈ Rd .

The sum X̄1 + · · ·+ X̄n is a random zonotope.

A picture of a zonotope:
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Our starting point is a result of Richard A. Vitale (1991):

Theorem. Let X be a random vector in Rd with E∥X∥ < ∞.
Let MX be a d × d matrix whose columns are i.i.d. copies of X .
Then

E| detMX | = d !Vd(ZX ),

where ZX is the selection expectation of X̄ .
(Vd = volume in Rd ).
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Explanation
(e.g., Molchanov, Theory of Random Sets (2005))

The selection expectation of an integrably bounded random
closed set is the closure of the set of all expectations of
integrable selections of the set.

Fortunately, in our case, ZX is a convex body, and the support
functions satisfy

h(ZX,u) = Eh(X̄ ,u) =
∫
Rd

h(x̄ ,u)PX (dx) for u ∈ Rd ,

where PX is the distribution of X .

Thus, ZX can be approximated by finite sums of segments and
hence is a zonoid.
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Vitale’s result can be interpreted geometrically:

Since the absolute determinant of a quadratic matrix is the
volume of a parallelepiped, we have

EVd(X̄1 + · · ·+ X̄d) = d !Vd(ZX ),

if X1, . . . ,Xd are i.i.d. copies of X .

This calls for generalizations.

(1) Can it be extended to more than d summands? Yes.

(2) Can the volume be replaced by an intrinsic volume? Yes.

(3) Can the intrinsic volume V (K [j],Bd [d − j]) be replaced by a
mixed volume V (K [j],C1, . . . ,Cd−j) (with fixed C1, . . . ,Cd−j )?

6 / 19



Also here, the answer is Yes.

But now, a theorem of Alesker (2001), proving a conjecture of
McMullen (1980), comes to mind:

The functionals K 7→ V (K [j],C1, . . . ,Cd−j), C1, . . . ,Cd−j ∈ Kd ,
are dense in Valj , the space of translation invariant, continuous,
j-homogeneous valuations on the convex bodies in Rd .

Can this be used to extend the result to Valj?

Yes, but fortunately a more elementary approach is possible.

We have the following result:
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Theorem. Let X be a random vector in Rd with E∥X∥ < ∞.
Use its distribution PX to define a deterministic zonoid ZX with
support function

h(ZX , ·) =
∫
Rd

h(x̄ , ·)PX (dx).

Let X1, . . . ,Xn, with n ≥ j ∈ {1, . . . ,d}, be i.i.d. copies of X , and
define the random zonotope

Zn :=
1
n
(X̄1 + · · ·+ X̄n).

If φ ∈ Valj , then

Eφ(Zn) =
n!

nj(n − j)!
φ(ZX ).
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The essential steps of the proof

(1) A polynomiality result of McMullen (1974):

There exists a symmetric mapping Φ : (Kd)j → R, continuous,
translation invariant, Minkowski additive in each variable, such
that

φ(λ1K1 + · · ·+ λnKn)

=

j∑
r1,...,rn=0

(
j

r1 . . . rn

)
λr1

1 · · ·λrn
n Φ(K1[r1], . . . ,Kn[rn]).

(2) The fact that φ(K ) = 0 if dimK < j leads to a simplification
for segments, namely

φ(x̄1 + · · ·+ x̄n) = j!
∑

1≤i1<···<ij≤n

Φ(x̄i1 , . . . , x̄ij ).
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(3) Let j ≤ n ≤ k (think of large k ). Then (2) leads to

φ(x̄1 + · · ·+ x̄k ) =

(
k − j
n − j

)−1 ∑
1≤i1<···<in≤k

φ(x̄i1 + · · ·+ x̄in).

(4) With Zk := 1
k (X̄1 + · · ·+ X̄k ) we get

φ(Zk ) =
1
k j

(
k − j
n − j

)−1(k
n

)
U(n)

k (h)

with the U-statistic

U(n)
k (h) :=

(
k
n

)−1 ∑
1≤i1<···<in≤k

h(Xi1 , . . . ,Xin)

of order n with kernel function

h(x1, . . . , xn) := φ(x̄1 + · · ·+ x̄n), x1, . . . , xn ∈ Rd .
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(5) The strong law for U-statistics by Hoeffding (1961) says that

lim
k→∞

U(n)
k (h) = Eh(X1, . . . ,Xn) almost surely,

hence
lim

k→∞
φ(Zk ) =

(n − j)!
n!

n jEφ(Zn) a.s.

(6) The strong law for random sets by Artstein and Vitale (1975)
says that

lim
k→∞

Zk = EX̄ = ZX a.s.

in the Hausdorff metric, hence (using that φ is continuous)

lim
k→∞

φ(Zk ) = φ(ZX ) a.s.

(7) From (5) and (6) together,

(n − j)!
n!

n jEφ(Zn) = lim
k→∞

φ(Zk ) = φ(ZX ) ⇒ Assertion.
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A central limit theorem

Recall the U-statistic of order j with kernel h, for a random
sample (X1, . . . ,Xn) of size n ≥ j ,

U(j)
n (h) =

(
n
j

)−1 ∑
1≤i1<···<ij≤n

h(Xi1 , . . . ,Xij ).

There is a central limit theorem for U-statistics, by Hoeffding
(1948). It requires two conditions:

(a) Eh2(X1, . . . ,Xj) < ∞,
(b) ζ1 > 0, where

ζ1 := Eh̃2
1(X ), h̃1 := h1 − θ,

h1(x) := Eh(x ,X2, . . . ,Xj), θ := Eh(X1, . . . ,Xj).
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Under these assumptions, the central limit theorem says that,
as n → ∞, √

n
(

U(j)
n (h)− θ

)
d→ N (0, j2ζ1),

where N (0, j2ζ1) is a normally distributed random variable with
expectation 0 and variance j2ζ1.

Let’s see how the assumptions (a) and (b) can be satisfied in
our special case.

Here we have

h(x1, . . . , xn) = φ(x̄1 + · · ·+ x̄n), x1, . . . , xn ∈ Rd .
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(a) We need Eh2(X1, . . . ,Xj) < ∞.

Write X̄ = ∥X∥s, where s is a random segment with endpoints
o and a unit vector.
For n = j , the previous simplification gives

φ(x̄1 + · · ·+ x̄j) = j!Φ(x̄1, . . . , x̄j),

hence

h(X1, . . . ,j ) = j!Φ(X̄1, . . . , X̄j) = j!∥X1∥ · · · ∥Xj∥Φ(s1, . . . , sj),

Here it was used that Φ is Minkowski linear in each variable. It
follows that

Eh2(X1, . . . ,Xj) = (j!)2E[∥X1∥ · · · ∥Xj∥Φ(s1, . . . , sj)]
2 < ∞

if E∥X∥2 < ∞, since Φ is continuous and hence attains a
maximum on a compact set of convex bodies.
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(b) We need ζ1 > 0.

First, we have

θ = Eh(X1, . . . ,Xj) = Eφ(X̄1 + · · ·+ X̄j) = j jEφ(Zj) = φ(ZX ),

by our first theorem.

Second, for x ∈ Rd we have

h1(x) = Eh(x , X̄2 . . . , X̄j) = Eφ(x̄ + X̄2 + · · ·+ X̄j).

We define a random zonotope Zn(x) by

Zn(x) := x̄ +
1
n
(X̄2 + · · ·+ X̄n)

d
= x̄ +

n − 1
n

Zn−1.

Then, with probability one (by Artstein–Vitale) Zn(x) → x + ZX
as → ∞.
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Thus,
lim

n→∞
φ(Zn(x)) = φ(x + ZX ) a.s.

From a previous identity, together with properties of Φ, we
obtain

φ(Zn(x)) =
1

nj−1

(
n − 1
j − 1

)
U(j−1)

n−1 (gx) +
1
nj U

(j)
n−1(h)

with gx(x2, . . . , xj) := φ(x̄ + x̄2 + · · ·+ x̄j).

The strong law for U-statistics gives that, with probability one,

lim
n→∞

φ(Zn(x)) =
1

(j − 1)!
Eφ(x̄2 + · · ·+ x̄j) +

1
j!
Eφ(x̄1 + · · ·+ x̄j).
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Both limit theorems together give

h1(x) = (j − 1)![φ(x + ZX )− φ(ZX )].

Recall that
ζ1 = E[h1(X )− θ]2.

Hence, to achieve that ζ1 > 0, we need assumptions to ensure
that NOT

φ(x + ZX ) = (j + 1)φ(ZX ) for all x ∈ suppPX .
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Hence, we assume the following:

(1) E∥X∥2 < ∞,

(2) The support of PX contains o and is not contained in some
(j − 1)-dimensional linear subspace,

(3) φ(K ) ̸= 0 if dimK ≥ j .

Theorem. Under these assumptions, as n → ∞,

√
n (φ(Zn)− φ(ZX ))

d→ N (0, (j!j)2ζ1).
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Thank you for your attention!
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