On a *j*-Santaló Conjecture

Christos Saroglou (joint work with P. Kalantzopoulos)

Department of Mathematics University of Ioannina

June 28, 2023

Convex Geometry - Analytic Aspects, Cortona, 26-30 June, 2023

Christos Saroglou (joint work with P. Kalantzopoulos) On a *j*-Santaló Conjecture

- Let K be a symmetric (i.e. K = −K) convex body (i.e. compact convex with non-empty interior in ℝⁿ).
- The polar body of K is the convex body given

$$K^{\circ} := \{ x \in \mathbb{R}^n : \langle x, y \rangle \le 1, \forall y \in K \}.$$

- Let K be a symmetric (i.e. K = −K) convex body (i.e. compact convex with non-empty interior in ℝⁿ).
- The polar body of K is the convex body given

$$K^{\circ} := \{ x \in \mathbb{R}^n : \langle x, y \rangle \le 1, \forall y \in K \}.$$

• In other words, if *K* is the unit ball of an *n*-dimensional normed space, then *K*[°] is the unit ball of its dual.

- Let K be a symmetric (i.e. K = −K) convex body (i.e. compact convex with non-empty interior in ℝⁿ).
- The polar body of K is the convex body given

$$\mathcal{K}^{\circ} := \{ x \in \mathbb{R}^n : \langle x, y \rangle \le 1, \forall y \in \mathcal{K} \}.$$

- In other words, if K is the unit ball of an n-dimensional normed space, then K° is the unit ball of its dual.
- E.g. $(B_p^n)^\circ = B_q^n$, where 1/p + 1/q = 1 and $p \in [1, \infty]$.

- Let K be a symmetric (i.e. K = −K) convex body (i.e. compact convex with non-empty interior in ℝⁿ).
- The polar body of K is the convex body given

$$\mathcal{K}^{\circ} := \{ x \in \mathbb{R}^n : \langle x, y \rangle \le 1, \forall y \in \mathcal{K} \}.$$

- In other words, if K is the unit ball of an n-dimensional normed space, then K° is the unit ball of its dual.
- E.g. (Bⁿ_p)° = Bⁿ_q, where 1/p + 1/q = 1 and p ∈ [1,∞].
 (K°)° = K.

- Let K be a symmetric (i.e. K = −K) convex body (i.e. compact convex with non-empty interior in ℝⁿ).
- The polar body of K is the convex body given

$$\mathcal{K}^{\circ} := \{ x \in \mathbb{R}^n : \langle x, y \rangle \le 1, \forall y \in \mathcal{K} \}.$$

- In other words, if K is the unit ball of an n-dimensional normed space, then K° is the unit ball of its dual.
- E.g. $(B_p^n)^\circ = B_q^n$, where 1/p + 1/q = 1 and $p \in [1, \infty]$.
- $(K^{\circ})^{\circ} = K$.
- If K is not necessarily convex, then $K^{\circ} = (\operatorname{conv} K)^{\circ}$.

- Let K be a symmetric (i.e. K = −K) convex body (i.e. compact convex with non-empty interior in ℝⁿ).
- The polar body of K is the convex body given

$$\mathcal{K}^{\circ} := \{ x \in \mathbb{R}^n : \langle x, y \rangle \le 1, \forall y \in \mathcal{K} \}.$$

- In other words, if K is the unit ball of an n-dimensional normed space, then K° is the unit ball of its dual.
- E.g. $(B_p^n)^\circ = B_q^n$, where 1/p + 1/q = 1 and $p \in [1, \infty]$.
- $(K^{\circ})^{\circ} = K$.
- If K is not necessarily convex, then $K^{\circ} = (\operatorname{conv} K)^{\circ}$.

- (Linear equivariance) For $T \in GL(n)$, $(TK)^{\circ} = T^{-*}(K^{\circ})$.
- Thus, the quantity $|K||K^{\circ}|$ is invariant under non-singular linear maps.

- (Linear equivariance) For $T \in GL(n)$, $(TK)^{\circ} = T^{-*}(K^{\circ})$.
- Thus, the quantity $|K||K^{\circ}|$ is invariant under non-singular linear maps.
- $\bullet\,$ Continuity and Blaschke's Selection Theorem $\Rightarrow\,$ the volume product

 $|K||K^{\circ}|$

attains a minimum and a maximum.

- (Linear equivariance) For $T \in GL(n)$, $(TK)^{\circ} = T^{-*}(K^{\circ})$.
- Thus, the quantity |K||K°| is invariant under non-singular linear maps.
- $\bullet\,$ Continuity and Blaschke's Selection Theorem $\Rightarrow\,$ the volume product

 $|K||K^{\circ}|$

attains a minimum and a maximum.

• Maximum (Blaschke-Santaló inequality):

 $|K||K^{\circ}| \le |B_2^n|^2,$

with equality if and only if K is an ellipsoid.

- (Linear equivariance) For $T \in GL(n)$, $(TK)^{\circ} = T^{-*}(K^{\circ})$.
- Thus, the quantity |K||K°| is invariant under non-singular linear maps.
- $\bullet\,$ Continuity and Blaschke's Selection Theorem $\Rightarrow\,$ the volume product

attains a minimum and a maximum.

• Maximum (Blaschke-Santaló inequality):

 $|K||K^{\circ}| \leq |B_2^n|^2,$

 $|K||K^{\circ}|$

with equality if and only if K is an ellipsoid.

 Minimum (Mahler's Conjecture): |K||K°| ≤ |Cube||Polar of the cube|.

- (Linear equivariance) For $T \in GL(n)$, $(TK)^{\circ} = T^{-*}(K^{\circ})$.
- Thus, the quantity |K||K°| is invariant under non-singular linear maps.
- $\bullet\,$ Continuity and Blaschke's Selection Theorem $\Rightarrow\,$ the volume product

 $|K||K^{\circ}|$

attains a minimum and a maximum.

• Maximum (Blaschke-Santaló inequality):

 $|K||K^{\circ}| \leq |B_2^n|^2,$

with equality if and only if K is an ellipsoid.

Minimum (Mahler's Conjecture):
 |K||K°| ≤ |Cube||Polar of the cube|.

• True for
$$n = 2, 3$$
.

- (Linear equivariance) For $T \in GL(n)$, $(TK)^{\circ} = T^{-*}(K^{\circ})$.
- Thus, the quantity |K||K°| is invariant under non-singular linear maps.
- $\bullet\,$ Continuity and Blaschke's Selection Theorem $\Rightarrow\,$ the volume product

 $|K||K^{\circ}|$

attains a minimum and a maximum.

• Maximum (Blaschke-Santaló inequality):

 $|K||K^{\circ}| \leq |B_2^n|^2,$

with equality if and only if K is an ellipsoid.

- Minimum (Mahler's Conjecture):
 |K||K°| ≤ |Cube||Polar of the cube|.
- True for n = 2, 3.

Recall

$$K^{\circ} = \{ x \in \mathbb{R}^n : \langle x, y \rangle \leq 1 \}.$$

Thus, if K_1 , K_2 are symmetric sets (not necessarily convex) with

$$\langle x, y \rangle \leq 1, \forall x \in K_1, \forall y \in K_2,$$

then the Santaló inequality gives

 $|K_1||K_2| \le |K_1||K_1^{\circ}| \le |B_2^n|^2.$

Recall

$$K^{\circ} = \{ x \in \mathbb{R}^n : \langle x, y \rangle \leq 1 \}.$$

Thus, if K_1 , K_2 are symmetric sets (not necessarily convex) with

$$\langle x, y \rangle \leq 1, \forall x \in K_1, \forall y \in K_2,$$

then the Santaló inequality gives

 $|K_1||K_2| \le |K_1||K_1^{\circ}| \le |B_2^n|^2.$

A functional version

• Let $f : \mathbb{R}^n \to \mathbb{R}_+$ be a function. Its polar is defined as

$$f^{\circ}(x) := \inf_{y \in \mathbb{R}^n} (e^{-\langle x, y \rangle} / f(y))$$
$$= e^{-\mathcal{L}(-\log f)}(x),$$

where $\ensuremath{\mathcal{L}}$ denotes the Legendre transform.

• Theorem (Ball '86, Artstein-Klartag-Milman '05, Lehec '09): If *f* is even, then

$$\int_{\mathbb{R}^n} f(x) dx \int_{R^n} f^{\circ}(x) dx \le \int_{\mathbb{R}^n} e^{-|x|^2/2} dx \int_{R^n} (e^{-|x|^2/2})^{\circ} dx$$
$$= \left(\int_{\mathbb{R}^n} e^{-|x|^2/2} dx \right)^2 = (2\pi)^n.$$

A functional version

• Let $f : \mathbb{R}^n \to \mathbb{R}_+$ be a function. Its polar is defined as

$$f^{\circ}(x) := \inf_{y \in \mathbb{R}^n} \left(e^{-\langle x, y \rangle} / f(y) \right)$$
$$= e^{-\mathcal{L}(-\log f)}(x),$$

where \mathcal{L} denotes the Legendre transform.

• Theorem (Ball '86, Artstein-Klartag-Milman '05, Lehec '09): If *f* is even, then

$$\int_{\mathbb{R}^n} f(x) dx \int_{\mathbb{R}^n} f^{\circ}(x) dx \leq \int_{\mathbb{R}^n} e^{-|x|^2/2} dx \int_{\mathbb{R}^n} (e^{-|x|^2/2})^{\circ} dx$$
$$= \left(\int_{\mathbb{R}^n} e^{-|x|^2/2} dx \right)^2 = (2\pi)^n.$$

• Again, if f_1, f_2 (both even) satisfy $f_1(x_1)f_2(x_2) \le e^{-\langle x_1, x_2 \rangle}$, for all $(x_1, x_2) \in K_1 \times K_2$, then

$$\int_{\mathbb{R}^n} f_1 \int_{\mathbb{R}^n} f_2 \leq \left(\int_{\mathbb{R}^n} e^{-|x|^2/2} dx \right)^2.$$

• Recovers the classical Blaschke-Santaló inequality.

• Again, if f_1, f_2 (both even) satisfy $f_1(x_1)f_2(x_2) \le e^{-\langle x_1, x_2 \rangle}$, for all $(x_1, x_2) \in K_1 \times K_2$, then

$$\int_{\mathbb{R}^n} f_1 \int_{\mathbb{R}^n} f_2 \leq \left(\int_{\mathbb{R}^n} e^{-|x|^2/2} dx \right)^2.$$

- Recovers the classical Blaschke-Santaló inequality.
- And follows from it.

• Again, if f_1, f_2 (both even) satisfy $f_1(x_1)f_2(x_2) \le e^{-\langle x_1, x_2 \rangle}$, for all $(x_1, x_2) \in K_1 \times K_2$, then

$$\int_{\mathbb{R}^n} f_1 \int_{\mathbb{R}^n} f_2 \leq \left(\int_{\mathbb{R}^n} e^{-|x|^2/2} dx \right)^2.$$

- Recovers the classical Blaschke-Santaló inequality.
- And follows from it.

A non-trivial generalization

Theorem (Fradelizi-Meyer '07): Let f₁, f₂ : ℝⁿ → ℝ₊ be even and integrable and ρ : ℝ → ℝ₊ be measurable. If f₁(x₁)f₂(x₂) ≤ ρ(⟨x₁, x₂⟩), for all x₁, x₂ ∈ ℝⁿ, then

$$\int_{\mathbb{R}^n} f_1 \int_{\mathbb{R}^n} f_2 \leq \left(\int_{\mathbb{R}^n} \rho(|x|^2)^{1/2} dx \right)^2$$

• Recovers the (previous) functional Santaló inequality by setting $\rho(t) = e^{-t}$.

A non-trivial generalization

Theorem (Fradelizi-Meyer '07): Let f₁, f₂ : ℝⁿ → ℝ₊ be even and integrable and ρ : ℝ → ℝ₊ be measurable. If f₁(x₁)f₂(x₂) ≤ ρ(⟨x₁, x₂⟩), for all x₁, x₂ ∈ ℝⁿ, then

$$\int_{\mathbb{R}^n} f_1 \int_{\mathbb{R}^n} f_2 \leq \left(\int_{\mathbb{R}^n} \rho(|x|^2)^{1/2} dx \right)^2$$

- Recovers the (previous) functional Santaló inequality by setting $\rho(t) = e^{-t}$.
- Recovers the classical Blaschke-Santaló inequality by setting

$$f_i := 1_{\mathcal{K}_i}, \ i = 1, 2$$
 and $ho(t) := egin{cases} +\infty, & t < 0 \ 1_{[0,1]}(t) & t \geq 0 \end{cases},$

A non-trivial generalization

Theorem (Fradelizi-Meyer '07): Let f₁, f₂ : ℝⁿ → ℝ₊ be even and integrable and ρ : ℝ → ℝ₊ be measurable. If f₁(x₁)f₂(x₂) ≤ ρ(⟨x₁, x₂⟩), for all x₁, x₂ ∈ ℝⁿ, then

$$\int_{\mathbb{R}^n} f_1 \int_{\mathbb{R}^n} f_2 \leq \left(\int_{\mathbb{R}^n} \rho(|x|^2)^{1/2} dx \right)^2$$

- Recovers the (previous) functional Santaló inequality by setting $\rho(t) = e^{-t}$.
- Recovers the classical Blaschke-Santaló inequality by setting

$$f_i := 1_{\mathcal{K}_i}, \ i = 1,2$$
 and $ho(t) := egin{cases} +\infty, & t < 0 \ 1_{[0,1]}(t) & t \geq 0 \end{cases},$

Conjecture

(Kolesnikov-Werner '20) Let $k \ge 2$ be an integer, $\rho : \mathbb{R} \to \mathbb{R}_+$ be a decreasing function and $f_1, \ldots, f_k : \mathbb{R}^n \to \mathbb{R}_+$ be even integrable functions, such that

$$\prod_{i=1}^{k} f_i(x_i) \le \rho\left(\sum_{1 \le i < l \le k} \langle x_i, x_l \rangle\right), \qquad \forall x_1, \dots, x_k \in \mathbb{R}^n.$$
(1)

Then, it holds

$$\prod_{i=1}^k \int_{\mathbb{R}^n} f_i(x_i) \, dx_i \leq \left(\int_{\mathbb{R}^n} \rho\left(\frac{k(k-1)}{2} \|u\|_2^2\right)^{1/k} \, du \right)^k.$$

Theorem (Kolesnikov-Werner): True if all $f'_i s$ are unconditional.

Conjecture

(Kolesnikov-Werner '20) Let $k \ge 2$ be an integer, $\rho : \mathbb{R} \to \mathbb{R}_+$ be a decreasing function and $f_1, \ldots, f_k : \mathbb{R}^n \to \mathbb{R}_+$ be even integrable functions, such that

$$\prod_{i=1}^{k} f_i(x_i) \le \rho\left(\sum_{1 \le i < l \le k} \langle x_i, x_l \rangle\right), \qquad \forall x_1, \dots, x_k \in \mathbb{R}^n.$$
(1)

Then, it holds

$$\prod_{i=1}^k \int_{\mathbb{R}^n} f_i(x_i) \, dx_i \leq \left(\int_{\mathbb{R}^n} \rho\left(\frac{k(k-1)}{2} \|u\|_2^2 \right)^{1/k} \, du \right)^k.$$

Theorem (Kolesnikov-Werner): True if all $f'_i s$ are unconditional.

What is polarity for many sets or functions?

• Who knows?

• Recall polarity condition: For k = 2, $\langle x_1, x_2 \rangle \leq 1$, for all $x_1 \in K_1$, $x_2 \in K_2$ or $f_1(x_1)f_2(x_2) \leq \rho(\langle x_1, x_2 \rangle)$, for all $x_1, x_2 \in \mathbb{R}^n$.

What is polarity for many sets or functions?

- Who knows?
- Recall polarity condition: For k = 2, $\langle x_1, x_2 \rangle \leq 1$, for all $x_1 \in K_1$, $x_2 \in K_2$ or $f_1(x_1)f_2(x_2) \leq \rho(\langle x_1, x_2 \rangle)$, for all $x_1, x_2 \in \mathbb{R}^n$.
- This is natural because of axiomatic characterization of polarity (or duality) due to Gruber, Boroczky-Schneider, Artstein-Milman.
- Maybe we are more free to choose for k > 2?

- Who knows?
- Recall polarity condition: For k = 2, $\langle x_1, x_2 \rangle \leq 1$, for all $x_1 \in K_1$, $x_2 \in K_2$ or $f_1(x_1)f_2(x_2) \leq \rho(\langle x_1, x_2 \rangle)$, for all $x_1, x_2 \in \mathbb{R}^n$.
- This is natural because of axiomatic characterization of polarity (or duality) due to Gruber, Boroczky-Schneider, Artstein-Milman.
- Maybe we are more free to choose for k > 2?

• For $j \in \{1, \ldots, k\}$ and for reals r_1, \ldots, r_k , set

$$s_j(r_1,\ldots,r_k) := \sum_{1\leq i_1<\ldots< i_j\leq k} r_{i_1}\cdots r_{i_j}.$$

• For $x_1, \ldots, x_k \in \mathbb{R}^n$, with $x_i = (x_i(1), \ldots, x_i(n))$, set

$$\mathcal{S}_j(x_1,\ldots,x_n):=\sum_{l=1}^n s_j(x_1(l),\ldots,x_k(l))$$

and

$$\mathcal{E}_j := \frac{\mathcal{S}_j}{\binom{k}{j}}.$$

•
$$S_2(x_1,\ldots,x_k) = \sum_{1 \le i < l \le k} \langle x_i, x_l \rangle.$$

• For $j \in \{1, \ldots, k\}$ and for reals r_1, \ldots, r_k , set

$$s_j(r_1,\ldots,r_k) := \sum_{1\leq i_1<\ldots< i_j\leq k} r_{i_1}\cdots r_{i_j}.$$

• For $x_1, \ldots, x_k \in \mathbb{R}^n$, with $x_i = (x_i(1), \ldots, x_i(n))$, set

$$\mathcal{S}_j(x_1,\ldots,x_n):=\sum_{l=1}^n s_j(x_1(l),\ldots,x_k(l))$$

and

$$\mathcal{E}_j := \frac{\mathcal{S}_j}{\binom{k}{j}}.$$

•
$$S_2(x_1,\ldots,x_k) = \sum_{1 \leq i < l \leq k} \langle x_i, x_l \rangle.$$

 We say that the sets K₁,..., K_k satisfy E_j-polarity condition if for all x₁ ∈ K₁,..., x_k ∈ K_k, it holds

$$\mathcal{E}_j(x_1,\ldots,x_k)\leq 1.$$

We say that the functions f₁,..., f_k satisfy S_j-polarity condition with respect to a decreasing function ρ, if for all x₁,..., x_k ∈ ℝⁿ, it holds

$$f_1(x_1)\ldots f_k(x_k) \leq \rho(\mathcal{S}_j(x_1,\ldots,x_k)).$$

 We say that the sets K₁,..., K_k satisfy E_j-polarity condition if for all x₁ ∈ K₁,..., x_k ∈ K_k, it holds

$$\mathcal{E}_j(x_1,\ldots,x_k)\leq 1.$$

We say that the functions f₁,..., f_k satisfy S_j-polarity condition with respect to a decreasing function ρ, if for all x₁,..., x_k ∈ ℝⁿ, it holds

$$f_1(x_1)\ldots f_k(x_k) \leq \rho(\mathcal{S}_j(x_1,\ldots,x_k)).$$

j-Santaló conjectures

Conjecture

(*j*-Santaló conjecture) Let $2 \le j \le k$, where $k \ge 2$. If K_1, \ldots, K_k are symmetric convex bodies, satisfying \mathcal{E}_j -polarity condition, then

$$\prod_{i=1}^{k} |\mathcal{K}_i| \le |\mathcal{B}_j^n|^k.$$
(2)

Conjecture

(Functional j-Santaló conjecture) Let $2 \le j \le k$, where $k \ge 2$. If $f_1, \ldots, f_k : \mathbb{R}^n \to \mathbb{R}_+$ are even integrable functions, satisfying S_j -polarity condition with respect to some decreasing function $\rho : \mathbb{R} \to [0, \infty]$, then

$$\prod_{i=1}^{k} \int_{\mathbb{R}^n} f_i(x_i) \, dx_i \leq \left(\int_{\mathbb{R}^n} \rho\left(\binom{k}{j} \|u\|_j^j\right)^{1/k} \, du \right)^k.$$
(3)

Remarks

- If *j* = 2, then the Functional *j*-Santaló conjecture is just the Kolesnikov-Werner conjecture.
- Functional *j*-Santaló \Rightarrow *j*-Santaló. Indeed, take $f_i := 1_{K_i}, i = 1, ..., k$

and
$$\rho(t) := \begin{cases} +\infty, & t < 0\\ 1_{[0,1]} \left({k \choose j}^{-1} t \right) & t \ge 0 \end{cases}$$

Remarks

- If j = 2, then the Functional j-Santaló conjecture is just the Kolesnikov-Werner conjecture.
- Functional *j*-Santaló \Rightarrow *j*-Santaló. Indeed, take $f_i := 1_{K_i}, i = 1, ..., k$

and
$$ho(t):= egin{cases} +\infty, & t<0\\ 1_{[0,1]}\left({k \choose j}^{-1}t
ight) & t\geq 0 \end{cases}.$$

We exclude the case j = 1, because the quantity |K₁|...|K_k| can be unbounded for bodies K₁,..., K_k satisfying E₁-polarity condition. This can be seen by taking all K_i to be the symmetric slab {x ∈ ℝⁿ : |x₁ + ... + x_n| ≤ 1}.

Remarks

- If j = 2, then the Functional j-Santaló conjecture is just the Kolesnikov-Werner conjecture.
- Functional *j*-Santaló \Rightarrow *j*-Santaló. Indeed, take $f_i := 1_{K_i}, i = 1, ..., k$

and
$$ho(t):= egin{cases} +\infty, & t<0 \ 1_{[0,1]}\left({k \choose j}^{-1}t
ight) & t\geq 0 \end{cases}.$$

We exclude the case j = 1, because the quantity |K₁|...|K_k| can be unbounded for bodies K₁,..., K_k satisfying E₁-polarity condition. This can be seen by taking all K_i to be the symmetric slab {x ∈ ℝⁿ : |x₁ + ... + x_n| ≤ 1}.
Main (partial) results

Theorem

The j-Santaló Conjecture holds in the following cases:

() K_1, \ldots, K_k are unconditional convex bodies.

• *j* is even and K_3, \ldots, K_k are unconditional convex bodies. Moreover, in all three cases, (2) is sharp for $K_1 = K_2 = \ldots = K_k = B_j^n$.

Theorem

The functional j-Santaló Conjecture holds in the following cases:

() f_1, \ldots, f_k are unconditional functions.

$$\bigcirc j = k.$$

() *j* is even and f_3, \ldots, f_k are unconditional functions.

• Work with bodies instead of functions.

• This is because of

Proposition. The two conjectures (even for objects with certain symmetries) are equivalent.

- Work with bodies instead of functions.
- This is because of **Proposition.** The two conjectures (even for objects with certain symmetries) are equivalent.
- Then, one performs Steiner symmetrization a la Meyer-Pazor.

- Work with bodies instead of functions.
- This is because of **Proposition.** The two conjectures (even for objects with certain symmetries) are equivalent.
- Then, one performs Steiner symmetrization a la Meyer-Pazor.

Theorem(1-dimensional multiplicative Prékopa-Leindler inequality). If some integrable functions $h, h_i : \mathbb{R}_+ \to \mathbb{R}_+$, i = 1, ..., k, satisfy

$$\prod_{i=1}^k h_i(t_i)^{\frac{1}{k}} \leq h\left(\prod_{i=1}^k t_i^{\frac{1}{k}}\right), \qquad \forall t_i > 0, \ i = 1..., k,$$

then it holds

$$\prod_{i=1}^k \left(\int_{\mathbb{R}_+} h_i(t_i) \, dt_i\right)^{\frac{1}{k}} \leq \int_{\mathbb{R}_+} h(t) \, dt.$$

The unconditional case

Use Keith Ball's inductive argument and the PL inequality to obtain

Proposition. Let $1 \le j \le k$ be two integers, where $k \ge 2$. For any integrable functions $f_i : \mathbb{R}^n_+ \to \mathbb{R}_+$, i = 1, ..., k, satisfying S_j -polarity condition with respect to some decreasing function $\rho : \mathbb{R} \to [0, \infty]$, it holds

$$\prod_{i=1}^k \int_{\mathbb{R}^n_+} f_i(x_i) \, dx_i \leq \left(\int_{\mathbb{R}^n_+} \rho\left(\binom{k}{j} \|u\|_j^j\right)^{\frac{1}{k}} \, du \right)^k.$$

• One can replace \mathbb{R}^n_+ by \mathbb{R}^n if f_1, \ldots, f_k are unconditional.

The unconditional case

Use Keith Ball's inductive argument and the PL inequality to obtain

Proposition. Let $1 \le j \le k$ be two integers, where $k \ge 2$. For any integrable functions $f_i : \mathbb{R}^n_+ \to \mathbb{R}_+$, i = 1, ..., k, satisfying S_j -polarity condition with respect to some decreasing function $\rho : \mathbb{R} \to [0, \infty]$, it holds

$$\prod_{i=1}^k \int_{\mathbb{R}^n_+} f_i(x_i) \, dx_i \leq \left(\int_{\mathbb{R}^n_+} \rho\left(\binom{k}{j} \|u\|_j^j\right)^{\frac{1}{k}} \, du \right)^k$$

- One can replace \mathbb{R}^n_+ by \mathbb{R}^n if f_1, \ldots, f_k are unconditional.
- Implies the corresponding statement for convex bodies.

The unconditional case

Use Keith Ball's inductive argument and the PL inequality to obtain

Proposition. Let $1 \le j \le k$ be two integers, where $k \ge 2$. For any integrable functions $f_i : \mathbb{R}^n_+ \to \mathbb{R}_+$, i = 1, ..., k, satisfying S_j -polarity condition with respect to some decreasing function $\rho : \mathbb{R} \to [0, \infty]$, it holds

$$\prod_{i=1}^{k} \int_{\mathbb{R}^{n}_{+}} f_{i}(x_{i}) dx_{i} \leq \left(\int_{\mathbb{R}^{n}_{+}} \rho\left(\binom{k}{j} \|u\|_{j}^{j}\right)^{\frac{1}{k}} du \right)^{k}$$

- One can replace \mathbb{R}^n_+ by \mathbb{R}^n if f_1, \ldots, f_k are unconditional.
- Implies the corresponding statement for convex bodies.

- "⇐" trivial.
- " \Rightarrow " We can assume that $\lim_{t\to\infty} \rho(t) = 0$, ρ is continuous, strictly decreasing and that $\lim_{t\to 0^+} \rho(t) = \infty$.

- "⇐" trivial.
- " \Rightarrow " We can assume that $\lim_{t\to\infty} \rho(t) = 0$, ρ is continuous, strictly decreasing and that $\lim_{t\to 0^+} \rho(t) = \infty$.
- Define the (not necessarily convex) sets
 K_i(r_i) := {x_i ∈ ℝⁿ : f_i(x_i) ≥ r_i}, r_i ≥ 0. From S_j-polarity
 condition one obtains that, for x_i ∈ K_i(r_i), i = 1,..., k, it
 holds

$$r_1\ldots r_k\leq \prod_{i=1}^k f_i(x_i)\leq \rho\left(\mathcal{S}_j(x_1,\ldots,x_k)\right).$$

- "⇐" trivial.
- " \Rightarrow " We can assume that $\lim_{t\to\infty} \rho(t) = 0$, ρ is continuous, strictly decreasing and that $\lim_{t\to 0^+} \rho(t) = \infty$.
- Define the (not necessarily convex) sets $K_i(r_i) := \{x_i \in \mathbb{R}^n : f_i(x_i) \ge r_i\}, r_i \ge 0$. From S_j -polarity condition one obtains that, for $x_i \in K_i(r_i), i = 1, ..., k$, it holds

$$r_1\ldots r_k \leq \prod_{i=1}^k f_i(x_i) \leq \rho\left(\mathcal{S}_j(x_1,\ldots,x_k)\right).$$

Thus,

$$S_j(x_1,\ldots,x_k) \leq \rho^{-1}(r_1\cdots r_k).$$

- "⇐" trivial.
- " \Rightarrow " We can assume that $\lim_{t\to\infty} \rho(t) = 0$, ρ is continuous, strictly decreasing and that $\lim_{t\to 0^+} \rho(t) = \infty$.
- Define the (not necessarily convex) sets $K_i(r_i) := \{x_i \in \mathbb{R}^n : f_i(x_i) \ge r_i\}, r_i \ge 0$. From S_j -polarity condition one obtains that, for $x_i \in K_i(r_i), i = 1, ..., k$, it holds

$$r_1 \ldots r_k \leq \prod_{i=1}^k f_i(x_i) \leq \rho\left(\mathcal{S}_j(x_1, \ldots, x_k)\right).$$

• Thus,

$$S_j(x_1,\ldots,x_k) \leq \rho^{-1}(r_1\cdots r_k).$$

•
$$S_j$$
 is homogeneous of order $j \Rightarrow S_j(\lambda x_1, \cdots, \lambda x_k) \le {k \choose j}$,
where $\lambda := {k \choose j}^{\frac{1}{j}} \rho^{-1} (r_1 \cdots r_k)^{-\frac{1}{j}}$.

- "⇐" trivial.
- " \Rightarrow " We can assume that $\lim_{t\to\infty} \rho(t) = 0$, ρ is continuous, strictly decreasing and that $\lim_{t\to 0^+} \rho(t) = \infty$.
- Define the (not necessarily convex) sets $K_i(r_i) := \{x_i \in \mathbb{R}^n : f_i(x_i) \ge r_i\}, r_i \ge 0$. From S_j -polarity condition one obtains that, for $x_i \in K_i(r_i), i = 1, ..., k$, it holds

$$r_1 \ldots r_k \leq \prod_{i=1}^k f_i(x_i) \leq \rho\left(\mathcal{S}_j(x_1, \ldots, x_k)\right).$$

Thus,

$$\mathcal{S}_j(x_1,\ldots,x_k) \leq \rho^{-1}(r_1\cdots r_k).$$

• S_j is homogeneous of order $j \Rightarrow S_j(\lambda x_1, \cdots, \lambda x_k) \leq {k \choose j}$, where $\lambda := {k \choose j}^{\frac{1}{j}} \rho^{-1} (r_1 \cdots r_k)^{-\frac{1}{j}}$.

•
$$\Rightarrow$$
 (if *j*-Santaló conjecture holds)
 $|\lambda K_1(r_1)| \cdots |\lambda K_k(r_k)| \leq |\operatorname{conv}(\lambda K_1(r_1))| \cdots |\operatorname{conv}(\lambda K_k(r_k))| \leq |B_j^n|^k.$

$$(|\kappa_1(r_1)|\ldots|\kappa_k(r_k)|)^{1/k} \leq {\binom{k}{j}}^{-\frac{n}{j}}|B_j^n|\rho^{-1}(r_1\cdots r_k)^{\frac{kn}{j}}.$$

 $\bullet \Rightarrow$

$$\begin{split} \prod_{i=1}^{k} \int_{\mathbb{R}^{n}} f_{i}(x_{i}) \, dx_{i} &= \prod_{i=1}^{k} \int_{0}^{\infty} |K_{i}(r_{i})| \, dr_{i} \\ &\leq \left(\binom{k}{j} \right)^{-\frac{kn}{j}} |B_{j}^{n}|^{k} \left(\int_{0}^{\infty} \rho^{-1} (r^{k})^{\frac{n}{j}} \, dr \right)^{k}. \end{split}$$

•
$$\Rightarrow$$
 (if *j*-Santaló conjecture holds)
 $|\lambda K_1(r_1)| \cdots |\lambda K_k(r_k)| \leq |\operatorname{conv}(\lambda K_1(r_1))| \cdots |\operatorname{conv}(\lambda K_k(r_k))| \leq |B_j^n|^k.$

$$(|\kappa_1(r_1)|\ldots|\kappa_k(r_k)|)^{1/k} \leq {\binom{k}{j}}^{-\frac{n}{j}}|B_j^n|\rho^{-1}(r_1\cdots r_k)^{\frac{kn}{j}}.$$

• $PL \Rightarrow$

 $\bullet \Rightarrow$

$$\begin{split} \prod_{i=1}^k \int_{\mathbb{R}^n} f_i(x_i) \, dx_i &= \prod_{i=1}^k \int_0^\infty |\mathcal{K}_i(r_i)| \, dr_i \\ &\leq \left(\binom{k}{j} \right)^{-\frac{kn}{j}} |\mathcal{B}_j^n|^k \left(\int_0^\infty \rho^{-1} (r^k)^{\frac{n}{j}} \, dr \right)^k. \end{split}$$

On the other hand,

$$\begin{split} &\int_{\mathbb{R}^n} \rho\left(\binom{k}{j} \|u\|_j^j\right)^{1/k} du \\ &= \int_0^\infty \left| \left\{ u : \rho\left(\binom{k}{j} \|u\|_j^j\right) \ge t^k \right\} \right| dt \\ &= \int_0^\infty \left| \left\{ u : \|u\|_j \le \left(\binom{k}{j}^{-1} \rho^{-1}(t^k)\right)^{\frac{1}{j}} \right\} \right| dt \\ &= \binom{k}{j}^{-\frac{n}{j}} |B_j^n| \int_0^\infty \rho^{-1}(t^k)^{\frac{n}{j}} dt. \quad \Box \end{split}$$

• For $x \in \mathbb{R}^n$, write $x = (\tilde{x}, r)$, where $\tilde{x} \in \mathbb{R}^{n-1}$ and $r \in \mathbb{R}$.

• For a set $A \subseteq \mathbb{R}^n$ and a number $r \in \mathbb{R}$, set

$$A(r) := \{ \tilde{x} \in \mathbb{R}^{n-1} : (\tilde{x}, r) \in A \}.$$

- For $x \in \mathbb{R}^n$, write $x = (\tilde{x}, r)$, where $\tilde{x} \in \mathbb{R}^{n-1}$ and $r \in \mathbb{R}$.
- For a set $A \subseteq \mathbb{R}^n$ and a number $r \in \mathbb{R}$, set

$$A(r) := \{ \tilde{x} \in \mathbb{R}^{n-1} : (\tilde{x}, r) \in A \}.$$

 The Steiner symmetrization of a convex body K with repsect to e[⊥]_n = Rⁿ⁻¹ is given by

$$st_{e_n^{\perp}}(K) = \left\{ \left(\tilde{x}, \frac{r-r'}{2} \right) \in \mathbb{R}^n : \tilde{x} \in P_{e_n^{\perp}}(K), \text{ and } (\tilde{x}, r), (\tilde{x}, r') \in K \right\}.$$

- For $x \in \mathbb{R}^n$, write $x = (\tilde{x}, r)$, where $\tilde{x} \in \mathbb{R}^{n-1}$ and $r \in \mathbb{R}$.
- For a set $A \subseteq \mathbb{R}^n$ and a number $r \in \mathbb{R}$, set

$$A(r) := \{ \tilde{x} \in \mathbb{R}^{n-1} : (\tilde{x}, r) \in A \}.$$

 The Steiner symmetrization of a convex body K with repsect to e[⊥]_n = Rⁿ⁻¹ is given by

$$st_{e_n^\perp}(K) = \left\{ \left(ilde{x}, rac{r-r'}{2}
ight) \in \mathbb{R}^n : ilde{x} \in P_{e_n^\perp}(K), ext{ and } (ilde{x}, r), (ilde{x}, r') \in K
ight\}.$$

The case j = k:

For symmetric convex bodies K₁, K₃,..., K_k, set (K₁, K₃,..., K_k)^o_j:

$$=\Big\{x_2\in\mathbb{R}^n:\mathcal{S}_j(x_1,x_2,\ldots,x_k)\leq\binom{k}{j}, \text{ for all } x_i\in K_i \text{ with } i\neq 2\Big\}.$$

That is, the largest convex set S, s.t. K_1, S, K_3, \ldots, K_k satisfy \mathcal{E}_i -polarity condition.

• We may assume that $K_2 = (K_1, K_3, \dots, K_k)_k^o$.

The case j = k:

For symmetric convex bodies K₁, K₃,..., K_k, set (K₁, K₃,..., K_k)^o_j:

$$= \Big\{ x_2 \in \mathbb{R}^n : \mathcal{S}_j(x_1, x_2, \dots, x_k) \leq \binom{k}{j}, \text{ for all } x_i \in \mathcal{K}_i \text{ with } i \neq 2 \Big\}.$$

That is, the largest convex set S, s.t. K_1, S, K_3, \ldots, K_k satisfy \mathcal{E}_j -polarity condition.

• We may assume that $K_2 = (K_1, K_3, \dots, K_k)_k^o$.

Our goal: To prove that

$$|K_1||K_2|\dots|K_k| \le |st_{e_n^{\perp}}K_1||K_2'||K_3|\dots|K_k|,$$

where $K'_{2} = (st_{e_{n}^{\perp}}K_{1}, K_{3}, \dots, K_{k})_{k}^{o}$.

The case j = k:

For symmetric convex bodies K₁, K₃,..., K_k, set (K₁, K₃,..., K_k)^o_j:

$$=\Big\{x_2\in\mathbb{R}^n:\mathcal{S}_j(x_1,x_2,\ldots,x_k)\leq\binom{k}{j}, \text{ for all } x_i\in K_i \text{ with } i\neq 2\Big\}.$$

That is, the largest convex set S, s.t. K_1, S, K_3, \ldots, K_k satisfy \mathcal{E}_i -polarity condition.

- We may assume that $K_2 = (K_1, K_3, \dots, K_k)_k^o$.
- Our goal: To prove that

$$|K_1||K_2|\ldots|K_k| \leq |st_{e_n^\perp}K_1||K_2'||K_3|\ldots|K_k|,$$

where $K'_{2} = (st_{e_{n}^{\perp}}K_{1}, K_{3}, \dots, K_{k})_{k}^{o}$.

- Since Steiner symmetrization preserves volume, it suffices to prove that $|K_2| \le |K_2'|$.
- Recall:

$$K_2(r) := \{ \tilde{x} \in \mathbb{R}^{n-1} : (\tilde{x}, r) \in K_2 \}.$$

- Since Steiner symmetrization preserves volume, it suffices to prove that |K₂| ≤ |K'₂|.
- Recall:

$$\mathcal{K}_2(r) := \{\tilde{x} \in \mathbb{R}^{n-1} : (\tilde{x}, r) \in \mathcal{K}_2\}.$$

• By Brunn-Minkowski and Fubini, it suffices to show that

$$\frac{K_2(r)+K_2(-r)}{2}\subseteq K_2'(r).$$

- Since Steiner symmetrization preserves volume, it suffices to prove that |K₂| ≤ |K'₂|.
- Recall:

$$\mathcal{K}_2(r) := \{\tilde{x} \in \mathbb{R}^{n-1} : (\tilde{x}, r) \in \mathcal{K}_2\}.$$

• By Brunn-Minkowski and Fubini, it suffices to show that

$$\frac{\mathsf{K}_2(r)+\mathsf{K}_2(-r)}{2}\subseteq\mathsf{K}_2'(r).$$

Let
$$\tilde{x}_2 \in K_2(r)$$
 and $\tilde{x}'_2 \in K_2(-r)$. Then, for all $(\tilde{x}_i, r_i) \in K_i$, $i = 3, \ldots, k$, and for all $(\tilde{x}_1, r_1), (\tilde{x}_1, r'_1) \in K_1$, it holds

$$S_k((\tilde{x}_1, r_1), (\tilde{x}_2, r), (\tilde{x}_3, r_3), \dots, (\tilde{x}_k, r_k)) \le \binom{k}{k} = 1$$
 (4)

 $\quad \text{and} \quad$

$$S_{k}((\tilde{x}_{1}, -r'_{1}), (\tilde{x}'_{2}, r), (\tilde{x}_{3}, r_{3}), \dots, (\tilde{x}_{k}, r_{k})) = S_{k}((\tilde{x}_{1}, r'_{1}), (\tilde{x}'_{2}, -r), (\tilde{x}_{3}, r_{3}), \dots, (\tilde{x}_{k}, r_{k})) \leq \binom{k}{k} = 1. (5)$$

Averaging (4) and (5) gives

$$\mathcal{S}_k\Big(\big(\tilde{x}_1,\frac{r_1-r_1'}{2}\big),\big(\frac{\tilde{x}_2+\tilde{x}_2'}{2},r\big),\big(\tilde{x}_3,r_3),\ldots,\big(\tilde{x}_k,r_k\big)\Big)\leq 1,$$

for all $(\tilde{x}_i, r_i) \in K_i$, i = 3, ..., k, and for all $(\tilde{x}_1, r_1), (\tilde{x}_1, r'_1) \in K_1$. Thus, $\frac{\tilde{x}_2 + \tilde{x}'_2}{2} \in K'_2(r)$ which proves the desired inclusion.

• Repeat the same argument wrt all coordinate hyperplanes to replace K₁ by an unconditional U₁.

Averaging (4) and (5) gives

$$\mathcal{S}_k\Big(\big(\tilde{x}_1,\frac{r_1-r_1'}{2}\big),\big(\frac{\tilde{x}_2+\tilde{x}_2'}{2},r\big),\big(\tilde{x}_3,r_3),\ldots,\big(\tilde{x}_k,r_k\big)\Big)\leq 1,$$

for all $(\tilde{x}_i, r_i) \in K_i$, i = 3, ..., k, and for all $(\tilde{x}_1, r_1), (\tilde{x}_1, r'_1) \in K_1$. Thus, $\frac{\tilde{x}_2 + \tilde{x}'_2}{2} \in K'_2(r)$ which proves the desired inclusion.

- Repeat the same argument wrt all coordinate hyperplanes to replace K_1 by an unconditional U_1 .
- Repeat the same process wrt to (the new) K_2 and K_3 to replace K_2 by an unconditional U_2 and so on.

Averaging (4) and (5) gives

$$\mathcal{S}_k\Big(\big(\tilde{x}_1,\frac{r_1-r_1'}{2}\big),\big(\frac{\tilde{x}_2+\tilde{x}_2'}{2},r\big),\big(\tilde{x}_3,r_3),\ldots,\big(\tilde{x}_k,r_k\big)\Big)\leq 1,$$

for all $(\tilde{x}_i, r_i) \in K_i$, i = 3, ..., k, and for all $(\tilde{x}_1, r_1), (\tilde{x}_1, r'_1) \in K_1$. Thus, $\frac{\tilde{x}_2 + \tilde{x}'_2}{2} \in K'_2(r)$ which proves the desired inclusion.

- Repeat the same argument wrt all coordinate hyperplanes to replace K_1 by an unconditional U_1 .
- Repeat the same process wrt to (the new) K_2 and K_3 to replace K_2 by an unconditional U_2 and so on.
- When all K₁,...K_{n-1} are replaced by unconditional U₁,...U_{n-1}, then (U₁,...,U_{n-1})[°]_k is also unconditional. The result follows from the unconditional case. □

Averaging (4) and (5) gives

$$\mathcal{S}_k\Big(\big(\tilde{x}_1,\frac{r_1-r_1'}{2}\big),\big(\frac{\tilde{x}_2+\tilde{x}_2'}{2},r\big),\big(\tilde{x}_3,r_3),\ldots,\big(\tilde{x}_k,r_k\big)\Big)\leq 1,$$

for all $(\tilde{x}_i, r_i) \in K_i$, i = 3, ..., k, and for all $(\tilde{x}_1, r_1), (\tilde{x}_1, r'_1) \in K_1$. Thus, $\frac{\tilde{x}_2 + \tilde{x}'_2}{2} \in K'_2(r)$ which proves the desired inclusion.

- Repeat the same argument wrt all coordinate hyperplanes to replace K_1 by an unconditional U_1 .
- Repeat the same process wrt to (the new) K_2 and K_3 to replace K_2 by an unconditional U_2 and so on.
- When all K_1, \ldots, K_{n-1} are replaced by unconditional U_1, \ldots, U_{n-1} , then $(U_1, \ldots, U_{n-1})_k^\circ$ is also unconditional. The result follows from the unconditional case. \Box

- The proof is the same.
- Based on the identity

- The proof is the same.
- Based on the identity

$$s_j(r_1, -r_2, \dots, -r_k) = s_j(-r_1, r_2, \dots, r_k)$$

(recall $s_k(r_1, -r_2, r_3, \dots, r_k) = s_k(-r_1, r_2, r_3, \dots, r_k)$).

- The proof is the same.
- Based on the identity

۲

$$s_j(r_1,-r_2,\ldots,-r_k)=s_j(-r_1,r_2,\ldots,r_k)$$

(recall
$$s_k(r_1, -r_2, r_3, ..., r_k) = s_k(-r_1, r_2, r_3, ..., r_k)$$
).
Does not hold if *j* is odd.

- The proof is the same.
- Based on the identity

$$s_j(r_1,-r_2,\ldots,-r_k)=s_j(-r_1,r_2,\ldots,r_k)$$

(recall $s_k(r_1, -r_2, r_3, \ldots, r_k) = s_k(-r_1, r_2, r_3, \ldots, r_k)$).

- Does not hold if *j* is odd.
- One can replace r₃,..., r_k by -r₃,..., -r_k in the corresponding expressions because of the unconditionality of K₃,..., K_k.

- The proof is the same.
- Based on the identity

$$s_j(r_1,-r_2,\ldots,-r_k)=s_j(-r_1,r_2,\ldots,r_k)$$

$$(\text{recall } s_k(r_1, -r_2, r_3, \dots, r_k) = s_k(-r_1, r_2, r_3, \dots, r_k)).$$

- Does not hold if *j* is odd.
- One can replace r₃,..., r_k by -r₃,..., -r_k in the corresponding expressions because of the unconditionality of K₃,..., K_k.

• Ball's functional:

$$B(K) := \int_K \int_{K^o} \langle x, y \rangle^2 \, dx \, dy.$$

• B(K) is invariant under non-singular linear maps.
Ball's functional:

$$B(K) := \int_K \int_{K^o} \langle x, y \rangle^2 \, dx \, dy.$$

B(K) is invariant under non-singular linear maps.
Ball's conjecture: If K is symmetric, then B(K) ≤ B(B₂ⁿ).

Ball's functional:

$$B(K) := \int_K \int_{K^o} \langle x, y \rangle^2 \, dx \, dy.$$

- B(K) is invariant under non-singular linear maps.
- Ball's conjecture: If K is symmetric, then $B(K) \leq B(B_2^n)$.
- **Theorem** (Ball '88): Conjecture is true if K is unconditional.

• Ball's functional:

$$B(K) := \int_K \int_{K^o} \langle x, y \rangle^2 \, dx \, dy.$$

- B(K) is invariant under non-singular linear maps.
- Ball's conjecture: If K is symmetric, then $B(K) \leq B(B_2^n)$.
- **Theorem** (Ball '88): Conjecture is true if K is unconditional.
- Implies (in a few lines) the Blaschke-Santaló inequality.

• Ball's functional:

$$B(K) := \int_K \int_{K^o} \langle x, y \rangle^2 \, dx \, dy.$$

- B(K) is invariant under non-singular linear maps.
- Ball's conjecture: If K is symmetric, then $B(K) \leq B(B_2^n)$.
- **Theorem** (Ball '88): Conjecture is true if K is unconditional.
- Implies (in a few lines) the Blaschke-Santaló inequality.

• Ball's functional:

$$B(K) := \int_K \int_{K^o} \langle x, y \rangle^2 \, dx \, dy.$$

- B(K) is invariant under non-singular linear maps.
- Ball's conjecture: If K is symmetric, then $B(K) \leq B(B_2^n)$.
- **Theorem** (Ball '88): Conjecture is true if K is unconditional.
- Implies (in a few lines) the Blaschke-Santaló inequality.

Ball's functional for many sets

Let D(n) be the set of all orthonormal basis' in ℝⁿ. For k ≥ 2, j ∈ {2,..., k} and {e_m} ∈ D(n), define

$$\mathcal{B}_j(K_1,\ldots,K_k,\{\epsilon_m\}) := \sum_{m=1}^n \prod_{i=1}^k \int_{K_i} |\langle x_i,\epsilon_m\rangle|^j \, dx_i.$$

• Ball's functional for many sets:

$$\mathcal{B}_j(K_1,\ldots,K_k):=\min_{\{\epsilon_m\}\in\mathcal{D}(n)}\mathcal{B}_j(K_1,\ldots,K_k,\{\epsilon_m\}).$$

Ball's functional for many sets

Let D(n) be the set of all orthonormal basis' in ℝⁿ. For k ≥ 2, j ∈ {2,..., k} and {e_m} ∈ D(n), define

$$\mathcal{B}_j(K_1,\ldots,K_k,\{\epsilon_m\}) := \sum_{m=1}^n \prod_{i=1}^k \int_{K_i} |\langle x_i,\epsilon_m\rangle|^j \, dx_i.$$

• Ball's functional for many sets:

$$\mathcal{B}_j(\mathcal{K}_1,\ldots,\mathcal{K}_k):=\min_{\{\epsilon_m\}\in\mathcal{D}(n)}\mathcal{B}_j(\mathcal{K}_1,\ldots,\mathcal{K}_k,\{\epsilon_m\}).$$

• Conjecture: If K_1, \ldots, K_k are symmetric, satisfying \mathcal{E}_j -polarity condition, then

$$\mathcal{B}_j(K_1,\ldots,K_k) \le \mathcal{B}_j(B_j^n,\ldots,B_j^n).$$
(6)

Ball's functional for many sets

Let D(n) be the set of all orthonormal basis' in ℝⁿ. For k ≥ 2, j ∈ {2,..., k} and {e_m} ∈ D(n), define

$$\mathcal{B}_j(K_1,\ldots,K_k,\{\epsilon_m\}) := \sum_{m=1}^n \prod_{i=1}^k \int_{K_i} |\langle x_i,\epsilon_m\rangle|^j \, dx_i.$$

• Ball's functional for many sets:

$$\mathcal{B}_j(\mathcal{K}_1,\ldots,\mathcal{K}_k):=\min_{\{\epsilon_m\}\in\mathcal{D}(n)}\mathcal{B}_j(\mathcal{K}_1,\ldots,\mathcal{K}_k,\{\epsilon_m\}).$$

• Conjecture: If K_1, \ldots, K_k are symmetric, satisfying \mathcal{E}_j -polarity condition, then

$$\mathcal{B}_j(K_1,\ldots,K_k) \leq \mathcal{B}_j(B_j^n,\ldots,B_j^n).$$
(6)

- It is equivalent to Ball's conjecture if k = 2.
- Holds in the unconditional case.
- Implies the *j*-Santaló conjecture.

Thank you for your attension!!!!!!