On a j-Santaló Conjecture

Christos Saroglou
(joint work with P. Kalantzopoulos)

Department of Mathematics
University of Ioannina
June 28, 2023

Convex Geometry - Analytic Aspects, Cortona, 26-30 June, 2023

Polarity

- Let K be a symmetric (i.e. $K=-K$) convex body (i.e. compact convex with non-empty interior in \mathbb{R}^{n}).
- The polar body of K is the convex body given

$$
K^{\circ}:=\left\{x \in \mathbb{R}^{n}:\langle x, y\rangle \leq 1, \forall y \in K\right\} .
$$

Polarity

- Let K be a symmetric (i.e. $K=-K$) convex body (i.e. compact convex with non-empty interior in \mathbb{R}^{n}).
- The polar body of K is the convex body given

$$
K^{\circ}:=\left\{x \in \mathbb{R}^{n}:\langle x, y\rangle \leq 1, \forall y \in K\right\} .
$$

- In other words, if K is the unit ball of an n-dimensional normed space, then K° is the unit ball of its dual.

Polarity

- Let K be a symmetric (i.e. $K=-K$) convex body (i.e. compact convex with non-empty interior in \mathbb{R}^{n}).
- The polar body of K is the convex body given

$$
K^{\circ}:=\left\{x \in \mathbb{R}^{n}:\langle x, y\rangle \leq 1, \forall y \in K\right\} .
$$

- In other words, if K is the unit ball of an n-dimensional normed space, then K° is the unit ball of its dual.
- E.g. $\left(B_{p}^{n}\right)^{\circ}=B_{q}^{n}$, where $1 / p+1 / q=1$ and $p \in[1, \infty]$.
- Let K be a symmetric (i.e. $K=-K$) convex body (i.e. compact convex with non-empty interior in \mathbb{R}^{n}).
- The polar body of K is the convex body given

$$
K^{\circ}:=\left\{x \in \mathbb{R}^{n}:\langle x, y\rangle \leq 1, \forall y \in K\right\} .
$$

- In other words, if K is the unit ball of an n-dimensional normed space, then K° is the unit ball of its dual.
- E.g. $\left(B_{p}^{n}\right)^{\circ}=B_{q}^{n}$, where $1 / p+1 / q=1$ and $p \in[1, \infty]$.
- $\left(K^{\circ}\right)^{\circ}=K$.
- Let K be a symmetric (i.e. $K=-K$) convex body (i.e. compact convex with non-empty interior in \mathbb{R}^{n}).
- The polar body of K is the convex body given

$$
K^{\circ}:=\left\{x \in \mathbb{R}^{n}:\langle x, y\rangle \leq 1, \forall y \in K\right\} .
$$

- In other words, if K is the unit ball of an n-dimensional normed space, then K° is the unit ball of its dual.
- E.g. $\left(B_{p}^{n}\right)^{\circ}=B_{q}^{n}$, where $1 / p+1 / q=1$ and $p \in[1, \infty]$.
- $\left(K^{\circ}\right)^{\circ}=K$.
- If K is not necessarily convex, then $K^{\circ}=(\text { conv } K)^{\circ}$.
- Let K be a symmetric (i.e. $K=-K$) convex body (i.e. compact convex with non-empty interior in \mathbb{R}^{n}).
- The polar body of K is the convex body given

$$
K^{\circ}:=\left\{x \in \mathbb{R}^{n}:\langle x, y\rangle \leq 1, \forall y \in K\right\} .
$$

- In other words, if K is the unit ball of an n-dimensional normed space, then K° is the unit ball of its dual.
- E.g. $\left(B_{p}^{n}\right)^{\circ}=B_{q}^{n}$, where $1 / p+1 / q=1$ and $p \in[1, \infty]$.
- $\left(K^{\circ}\right)^{\circ}=K$.
- If K is not necessarily convex, then $K^{\circ}=(\operatorname{conv} K)^{\circ}$.

Santaló inequality

- (Linear equivariance) For $T \in G L(n),(T K)^{\circ}=T^{-*}\left(K^{\circ}\right)$.
- Thus, the quantity $|K|\left|K^{\circ}\right|$ is invariant under non-singular linear maps.

Santaló inequality

- (Linear equivariance) For $T \in G L(n),(T K)^{\circ}=T^{-*}\left(K^{\circ}\right)$.
- Thus, the quantity $\left|K \| K^{\circ}\right|$ is invariant under non-singular linear maps.
- Continuity and Blaschke's Selection Theorem \Rightarrow the volume product
$|K|\left|K^{\circ}\right|$
attains a minimum and a maximum.

Santaló inequality

- (Linear equivariance) For $T \in G L(n),(T K)^{\circ}=T^{-*}\left(K^{\circ}\right)$.
- Thus, the quantity $\left|K \| K^{\circ}\right|$ is invariant under non-singular linear maps.
- Continuity and Blaschke's Selection Theorem \Rightarrow the volume product

$$
|K|\left|K^{\circ}\right|
$$

attains a minimum and a maximum.

- Maximum (Blaschke-Santaló inequality):

$$
|K|\left|K^{\circ}\right| \leq\left|B_{2}^{n}\right|^{2}
$$

with equality if and only if K is an ellipsoid.

Santaló inequality

- (Linear equivariance) For $T \in G L(n),(T K)^{\circ}=T^{-*}\left(K^{\circ}\right)$.
- Thus, the quantity $\left|K \| K^{\circ}\right|$ is invariant under non-singular linear maps.
- Continuity and Blaschke's Selection Theorem \Rightarrow the volume product

$$
|K|\left|K^{\circ}\right|
$$

attains a minimum and a maximum.

- Maximum (Blaschke-Santaló inequality):

$$
\left|K \| K^{\circ}\right| \leq\left|B_{2}^{n}\right|^{2}
$$

with equality if and only if K is an ellipsoid.

- Minimum (Mahler's Conjecture):
$|K|\left|K^{\circ}\right| \leq \mid$ Cube||Polar of the cube|.

Santaló inequality

- (Linear equivariance) For $T \in G L(n),(T K)^{\circ}=T^{-*}\left(K^{\circ}\right)$.
- Thus, the quantity $\left|K \| K^{\circ}\right|$ is invariant under non-singular linear maps.
- Continuity and Blaschke's Selection Theorem \Rightarrow the volume product

$$
|K|\left|K^{\circ}\right|
$$

attains a minimum and a maximum.

- Maximum (Blaschke-Santaló inequality):

$$
|K|\left|K^{\circ}\right| \leq\left|B_{2}^{n}\right|^{2}
$$

with equality if and only if K is an ellipsoid.

- Minimum (Mahler's Conjecture):
$|K|\left|K^{\circ}\right| \leq|C u b e||P o l a r ~ o f ~ t h e ~ c u b e| . ~$
- True for $n=2,3$.

Santaló inequality

- (Linear equivariance) For $T \in G L(n),(T K)^{\circ}=T^{-*}\left(K^{\circ}\right)$.
- Thus, the quantity $\left|K \| K^{\circ}\right|$ is invariant under non-singular linear maps.
- Continuity and Blaschke's Selection Theorem \Rightarrow the volume product

$$
|K|\left|K^{\circ}\right|
$$

attains a minimum and a maximum.

- Maximum (Blaschke-Santaló inequality):

$$
|K|\left|K^{\circ}\right| \leq\left|B_{2}^{n}\right|^{2}
$$

with equality if and only if K is an ellipsoid.

- Minimum (Mahler's Conjecture):
$|K|\left|K^{\circ}\right| \leq|C u b e| \mid$ Polar of the cube|.
- True for $n=2,3$.

A trivial generalization

Recall

$$
K^{\circ}=\left\{x \in \mathbb{R}^{n}:\langle x, y\rangle \leq 1\right\} .
$$

Thus, if K_{1}, K_{2} are symmetric sets (not necessarily convex) with

$$
\langle x, y\rangle \leq 1, \forall x \in K_{1}, \forall y \in K_{2},
$$

then the Santaló inequality gives

$$
\left|K_{1}\right|\left|K_{2}\right| \leq\left|K_{1}\right|\left|K_{1}^{0}\right| \leq\left|B_{2}^{n}\right|^{2} .
$$

A trivial generalization

Recall

$$
K^{\circ}=\left\{x \in \mathbb{R}^{n}:\langle x, y\rangle \leq 1\right\} .
$$

Thus, if K_{1}, K_{2} are symmetric sets (not necessarily convex) with

$$
\langle x, y\rangle \leq 1, \forall x \in K_{1}, \forall y \in K_{2}
$$

then the Santaló inequality gives

$$
\left|K_{1}\right|\left|K_{2}\right| \leq\left|K_{1}\right|\left|K_{1}^{\circ}\right| \leq\left|B_{2}^{n}\right|^{2} .
$$

A functional version

- Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}$be a function. Its polar is defined as

$$
\begin{aligned}
f^{\circ}(x): & =\inf _{y \in \mathbb{R}^{n}}\left(e^{-\langle x, y\rangle} / f(y)\right) \\
& =e^{-\mathcal{L}(-\log f)}(x)
\end{aligned}
$$

where \mathcal{L} denotes the Legendre transform.

- Theorem (Ball '86, Artstein-Klartag-Milman '05, Lehec '09): If f is even, then

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}} f(x) d x \int_{R^{n}} f^{\circ}(x) d x \leq \int_{\mathbb{R}^{n}} e^{-|x|^{2} / 2} d x \int_{R^{n}}\left(e^{-|x|^{2} / 2}\right)^{\circ} d x \\
= & \left(\int_{\mathbb{R}^{n}} e^{-|x|^{2} / 2} d x\right)^{2}=(2 \pi)^{n}
\end{aligned}
$$

A functional version

- Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}$be a function. Its polar is defined as

$$
\begin{aligned}
f^{\circ}(x): & =\inf _{y \in \mathbb{R}^{n}}\left(e^{-\langle x, y\rangle} / f(y)\right) \\
& =e^{-\mathcal{L}(-\log f)}(x),
\end{aligned}
$$

where \mathcal{L} denotes the Legendre transform.

- Theorem (Ball '86, Artstein-Klartag-Milman '05, Lehec '09): If f is even, then

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}} f(x) d x \int_{R^{n}} f^{\circ}(x) d x \leq \int_{\mathbb{R}^{n}} e^{-|x|^{2} / 2} d x \int_{R^{n}}\left(e^{-|x|^{2} / 2}\right)^{\circ} d x \\
= & \left(\int_{\mathbb{R}^{n}} e^{-|x|^{2} / 2} d x\right)^{2}=(2 \pi)^{n} .
\end{aligned}
$$

A functional version

- Again, if f_{1}, f_{2} (both even) satisfy $f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) \leq e^{-\left\langle x_{1}, x_{2}\right\rangle}$, for all $\left(x_{1}, x_{2}\right) \in K_{1} \times K_{2}$, then

$$
\int_{\mathbb{R}^{n}} f_{1} \int_{\mathbb{R}^{n}} f_{2} \leq\left(\int_{\mathbb{R}^{n}} e^{-|x|^{2} / 2} d x\right)^{2}
$$

- Recovers the classical Blaschke-Santaló inequality.

A functional version

- Again, if f_{1}, f_{2} (both even) satisfy $f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) \leq e^{-\left\langle x_{1}, x_{2}\right\rangle}$, for all $\left(x_{1}, x_{2}\right) \in K_{1} \times K_{2}$, then

$$
\int_{\mathbb{R}^{n}} f_{1} \int_{\mathbb{R}^{n}} f_{2} \leq\left(\int_{\mathbb{R}^{n}} e^{-|x|^{2} / 2} d x\right)^{2}
$$

- Recovers the classical Blaschke-Santaló inequality.
- And follows from it.

A functional version

- Again, if f_{1}, f_{2} (both even) satisfy $f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) \leq e^{-\left\langle x_{1}, x_{2}\right\rangle}$, for all $\left(x_{1}, x_{2}\right) \in K_{1} \times K_{2}$, then

$$
\int_{\mathbb{R}^{n}} f_{1} \int_{\mathbb{R}^{n}} f_{2} \leq\left(\int_{\mathbb{R}^{n}} e^{-|x|^{2} / 2} d x\right)^{2}
$$

- Recovers the classical Blaschke-Santaló inequality.
- And follows from it.

A non-trivial generalization

- Theorem (Fradelizi-Meyer '07): Let $f_{1}, f_{2}: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}$be even and integrable and $\rho: \mathbb{R} \rightarrow \mathbb{R}_{+}$be measurable. If $f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) \leq \rho\left(\left\langle x_{1}, x_{2}\right\rangle\right)$, for all $x_{1}, x_{2} \in \mathbb{R}^{n}$, then

$$
\int_{\mathbb{R}^{n}} f_{1} \int_{\mathbb{R}^{n}} f_{2} \leq\left(\int_{\mathbb{R}^{n}} \rho\left(|x|^{2}\right)^{1 / 2} d x\right)^{2}
$$

- Recovers the (previous) functional Santaló inequality by setting $\rho(t)=e^{-t}$.

A non-trivial generalization

- Theorem (Fradelizi-Meyer '07): Let $f_{1}, f_{2}: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}$be even and integrable and $\rho: \mathbb{R} \rightarrow \mathbb{R}_{+}$be measurable. If $f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) \leq \rho\left(\left\langle x_{1}, x_{2}\right\rangle\right)$, for all $x_{1}, x_{2} \in \mathbb{R}^{n}$, then

$$
\int_{\mathbb{R}^{n}} f_{1} \int_{\mathbb{R}^{n}} f_{2} \leq\left(\int_{\mathbb{R}^{n}} \rho\left(|x|^{2}\right)^{1 / 2} d x\right)^{2}
$$

- Recovers the (previous) functional Santaló inequality by setting $\rho(t)=e^{-t}$.
- Recovers the classical Blaschke-Santaló inequality by setting

$$
f_{i}:=1_{K_{i}}, \quad i=1,2 \quad \text { and } \quad \rho(t):= \begin{cases}+\infty, & t<0 \\ 1_{[0,1]}(t) & t \geq 0\end{cases}
$$

A non-trivial generalization

- Theorem (Fradelizi-Meyer '07): Let $f_{1}, f_{2}: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}$be even and integrable and $\rho: \mathbb{R} \rightarrow \mathbb{R}_{+}$be measurable. If $f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) \leq \rho\left(\left\langle x_{1}, x_{2}\right\rangle\right)$, for all $x_{1}, x_{2} \in \mathbb{R}^{n}$, then

$$
\int_{\mathbb{R}^{n}} f_{1} \int_{\mathbb{R}^{n}} f_{2} \leq\left(\int_{\mathbb{R}^{n}} \rho\left(|x|^{2}\right)^{1 / 2} d x\right)^{2}
$$

- Recovers the (previous) functional Santaló inequality by setting $\rho(t)=e^{-t}$.
- Recovers the classical Blaschke-Santaló inequality by setting

$$
f_{i}:=1_{K_{i}}, i=1,2 \quad \text { and } \quad \rho(t):=\left\{\begin{array}{ll}
+\infty, & t<0 \\
1_{[0,1]}(t) & t \geq 0
\end{array},\right.
$$

Functional Santaló for many functions (?)

Conjecture

(Kolesnikov-Werner '20) Let $k \geq 2$ be an integer, $\rho: \mathbb{R} \rightarrow \mathbb{R}_{+}$be a decreasing function and $f_{1}, \ldots, f_{k}: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}$be even integrable functions, such that

$$
\begin{equation*}
\prod_{i=1}^{k} f_{i}\left(x_{i}\right) \leq \rho\left(\sum_{1 \leq i<1 \leq k}\left\langle x_{i}, x_{1}\right\rangle\right), \quad \forall x_{1}, \ldots, x_{k} \in \mathbb{R}^{n} . \tag{1}
\end{equation*}
$$

Then, it holds

$$
\prod_{i=1}^{k} \int_{\mathbb{R}^{n}} f_{i}\left(x_{i}\right) d x_{i} \leq\left(\int_{\mathbb{R}^{n}} \rho\left(\frac{k(k-1)}{2}\|u\|_{2}^{2}\right)^{1 / k} d u\right)^{k} .
$$

Theorem (Kolesnikov-Werner): True if all $f_{i}^{\prime} s$ are unconditional.

Functional Santaló for many functions (?)

Conjecture

(Kolesnikov-Werner '20) Let $k \geq 2$ be an integer, $\rho: \mathbb{R} \rightarrow \mathbb{R}_{+}$be a decreasing function and $f_{1}, \ldots, f_{k}: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}$be even integrable functions, such that

$$
\begin{equation*}
\prod_{i=1}^{k} f_{i}\left(x_{i}\right) \leq \rho\left(\sum_{1 \leq i<1 \leq k}\left\langle x_{i}, x_{1}\right\rangle\right), \quad \forall x_{1}, \ldots, x_{k} \in \mathbb{R}^{n} . \tag{1}
\end{equation*}
$$

Then, it holds

$$
\prod_{i=1}^{k} \int_{\mathbb{R}^{n}} f_{i}\left(x_{i}\right) d x_{i} \leq\left(\int_{\mathbb{R}^{n}} \rho\left(\frac{k(k-1)}{2}\|u\|_{2}^{2}\right)^{1 / k} d u\right)^{k} .
$$

Theorem (Kolesnikov-Werner): True if all $f_{i}^{\prime} s$ are unconditional.

What is polarity for many sets or functions?

- Who knows?
- Recall polarity condition: For $k=2,\left\langle x_{1}, x_{2}\right\rangle \leq 1$, for all $x_{1} \in K_{1}, x_{2} \in K_{2}$ or $f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) \leq \rho\left(\left\langle x_{1}, x_{2}\right\rangle\right)$, for all $x_{1}, x_{2} \in \mathbb{R}^{n}$.

What is polarity for many sets or functions?

- Who knows?
- Recall polarity condition: For $k=2,\left\langle x_{1}, x_{2}\right\rangle \leq 1$, for all $x_{1} \in K_{1}, x_{2} \in K_{2}$ or $f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) \leq \rho\left(\left\langle x_{1}, x_{2}\right\rangle\right)$, for all $x_{1}, x_{2} \in \mathbb{R}^{n}$.
- This is natural because of axiomatic characterization of polarity (or duality) due to Gruber, Boroczky-Schneider, Artstein-Milman.
- Maybe we are more free to choose for $k>2$?

What is polarity for many sets or functions?

- Who knows?
- Recall polarity condition: For $k=2,\left\langle x_{1}, x_{2}\right\rangle \leq 1$, for all $x_{1} \in K_{1}, x_{2} \in K_{2}$ or $f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) \leq \rho\left(\left\langle x_{1}, x_{2}\right\rangle\right)$, for all $x_{1}, x_{2} \in \mathbb{R}^{n}$.
- This is natural because of axiomatic characterization of polarity (or duality) due to Gruber, Boroczky-Schneider, Artstein-Milman.
- Maybe we are more free to choose for $k>2$?

j-polarity condition

- For $j \in\{1, \ldots, k\}$ and for reals r_{1}, \ldots, r_{k}, set

$$
s_{j}\left(r_{1}, \ldots, r_{k}\right):=\sum_{1 \leq i_{1}<\ldots<i_{j} \leq k} r_{i_{1}} \cdots r_{i_{j}} .
$$

- For $x_{1}, \ldots, x_{k} \in \mathbb{R}^{n}$, with $x_{i}=\left(x_{i}(1), \ldots, x_{i}(n)\right)$, set

$$
S_{j}\left(x_{1}, \ldots, x_{n}\right):=\sum_{l=1}^{n} s_{j}\left(x_{1}(l), \ldots, x_{k}(l)\right)
$$

- $S_{2}\left(x_{1}, \ldots, x_{k}\right)=\sum_{1 \leq i<1 \leq k}\left\langle x_{i}, x_{l}\right\rangle$.

j-polarity condition

- For $j \in\{1, \ldots, k\}$ and for reals r_{1}, \ldots, r_{k}, set

$$
s_{j}\left(r_{1}, \ldots, r_{k}\right):=\sum_{1 \leq i_{1}<\ldots<i_{j} \leq k} r_{i_{1}} \cdots r_{i_{j}} .
$$

- For $x_{1}, \ldots, x_{k} \in \mathbb{R}^{n}$, with $x_{i}=\left(x_{i}(1), \ldots, x_{i}(n)\right)$, set

$$
\mathcal{S}_{j}\left(x_{1}, \ldots, x_{n}\right):=\sum_{l=1}^{n} s_{j}\left(x_{1}(I), \ldots, x_{k}(I)\right)
$$

and

$$
\mathcal{E}_{j}:=\frac{\mathcal{S}_{j}}{\binom{k}{j}} .
$$

- $S_{2}\left(x_{1}, \ldots, x_{k}\right)=\sum_{1 \leq i<1 \leq k}\left\langle x_{i}, x_{l}\right\rangle$.

j-polarity condition

- We say that the sets K_{1}, \ldots, K_{k} satisfy \mathcal{E}_{j}-polarity condition if for all $x_{1} \in K_{1}, \ldots, x_{k} \in K_{k}$, it holds

$$
\mathcal{E}_{j}\left(x_{1}, \ldots, x_{k}\right) \leq 1 .
$$

- We say that the functions f_{1}, \ldots, f_{k} satisfy \mathcal{S}_{j}-polarity condition with respect to a decreasing function ρ, if for all $x_{1}, \ldots, x_{k} \in \mathbb{R}^{n}$, it holds

$$
f_{1}\left(x_{1}\right) \ldots f_{k}\left(x_{k}\right) \leq \rho\left(\mathcal{S}_{j}\left(x_{1}, \ldots, x_{k}\right)\right.
$$

j-polarity condition

- We say that the sets K_{1}, \ldots, K_{k} satisfy \mathcal{E}_{j}-polarity condition if for all $x_{1} \in K_{1}, \ldots, x_{k} \in K_{k}$, it holds

$$
\mathcal{E}_{j}\left(x_{1}, \ldots, x_{k}\right) \leq 1
$$

- We say that the functions f_{1}, \ldots, f_{k} satisfy \mathcal{S}_{j}-polarity condition with respect to a decreasing function ρ, if for all $x_{1}, \ldots, x_{k} \in \mathbb{R}^{n}$, it holds

$$
f_{1}\left(x_{1}\right) \ldots f_{k}\left(x_{k}\right) \leq \rho\left(\mathcal{S}_{j}\left(x_{1}, \ldots, x_{k}\right)\right.
$$

j-Santaló conjectures

Conjecture

(j-Santaló conjecture) Let $2 \leq j \leq k$, where $k \geq 2$. If K_{1}, \ldots, K_{k} are symmetric convex bodies, satisfying \mathcal{E}_{j}-polarity condition, then

$$
\prod_{i=1}^{k}\left|K_{i}\right| \leq\left|B_{j}^{n}\right|^{k}
$$

Conjecture

(Functional j-Santaló conjecture) Let $2 \leq j \leq k$, where $k \geq 2$. If $f_{1}, \ldots, f_{k}: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}$are even integrable functions, satisfying \mathcal{S}_{j}-polarity condition with respect to some decreasing function $\rho: \mathbb{R} \rightarrow[0, \infty]$, then

$$
\begin{equation*}
\prod_{i=1}^{k} \int_{\mathbb{R}^{n}} f_{i}\left(x_{i}\right) d x_{i} \leq\left(\int_{\mathbb{R}^{n}} \rho\left(\binom{k}{j}\|u\|_{j}^{j}\right)^{1 / k} d u\right)^{k} \tag{3}
\end{equation*}
$$

Remarks

- If $j=2$, then the Functional j-Santaló conjecture is just the Kolesnikov-Werner conjecture.
- Functional j-Santaló $\Rightarrow j$-Santaló. Indeed, take $f_{i}:=1_{K_{i}}, i=1, \ldots, k$

$$
\rho(t):= \begin{cases}+\infty, & t<0 \\ 1_{[0,1]}\left(\binom{k}{j}^{-1} t\right) & t \geq 0\end{cases}
$$

Remarks

- If $j=2$, then the Functional j-Santaló conjecture is just the Kolesnikov-Werner conjecture.
- Functional j-Santaló $\Rightarrow j$-Santaló. Indeed, take $f_{i}:=1_{K_{i}}, i=1, \ldots, k$

$$
\text { and } \quad \rho(t):=\left\{\begin{array}{ll}
+\infty, & t<0 \\
1_{[0,1]}\left(\binom{k}{j}^{-1} t\right) & t \geq 0
\end{array} .\right.
$$

- We exclude the case $j=1$, because the quantity $\left|K_{1}\right| \ldots\left|K_{k}\right|$ can be unbounded for bodies K_{1}, \ldots, K_{k} satisfying \mathcal{E}_{1}-polarity condition. This can be seen by taking all K_{i} to be the symmetric slab $\left\{x \in \mathbb{R}^{n}:\left|x_{1}+\ldots+x_{n}\right| \leq 1\right\}$.

Remarks

- If $j=2$, then the Functional j-Santaló conjecture is just the Kolesnikov-Werner conjecture.
- Functional j-Santaló $\Rightarrow j$-Santaló. Indeed, take $f_{i}:=1_{K_{i}}, i=1, \ldots, k$

$$
\text { and } \quad \rho(t):=\left\{\begin{array}{ll}
+\infty, & t<0 \\
1_{[0,1]}\left(\binom{k}{j}^{-1} t\right) & t \geq 0
\end{array} .\right.
$$

- We exclude the case $j=1$, because the quantity $\left|K_{1}\right| \ldots\left|K_{k}\right|$ can be unbounded for bodies K_{1}, \ldots, K_{k} satisfying \mathcal{E}_{1}-polarity condition. This can be seen by taking all K_{i} to be the symmetric slab $\left\{x \in \mathbb{R}^{n}:\left|x_{1}+\ldots+x_{n}\right| \leq 1\right\}$.

Main (partial) results

Theorem

The j-Santaló Conjecture holds in the following cases:
(1) K_{1}, \ldots, K_{k} are unconditional convex bodies.
(1) $j=k$.
(I) j is even and K_{3}, \ldots, K_{k} are unconditional convex bodies.

Moreover, in all three cases, (2) is sharp for $K_{1}=K_{2}=\ldots=K_{k}=B_{j}^{n}$.

Theorem

The functional j-Santaló Conjecture holds in the following cases:
(1) f_{1}, \ldots, f_{k} are unconditional functions.
(1) $j=k$.
(1) j is even and f_{3}, \ldots, f_{k} are unconditional functions.

Idea of Proof

- Work with bodies instead of functions.
- This is because of

Proposition. The two conjectures (even for objects with certain symmetries) are equivalent.

Idea of Proof

- Work with bodies instead of functions.
- This is because of

Proposition. The two conjectures (even for objects with certain symmetries) are equivalent.

- Then, one performs Steiner symmetrization a la Meyer-Pazor.

Idea of Proof

- Work with bodies instead of functions.
- This is because of

Proposition. The two conjectures (even for objects with certain symmetries) are equivalent.

- Then, one performs Steiner symmetrization a la Meyer-Pazor.

Theorem(1-dimensional multiplicative Prékopa-Leindler inequality). If some integrable functions $h, h_{i}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$, $i=1, \ldots, k$, satisfy

$$
\prod_{i=1}^{k} h_{i}\left(t_{i}\right)^{\frac{1}{k}} \leq h\left(\prod_{i=1}^{k} t_{i}^{\frac{1}{k}}\right), \quad \forall t_{i}>0, i=1 \ldots, k
$$

then it holds

$$
\prod_{i=1}^{k}\left(\int_{\mathbb{R}_{+}} h_{i}\left(t_{i}\right) d t_{i}\right)^{\frac{1}{k}} \leq \int_{\mathbb{R}_{+}} h(t) d t
$$

- Use Keith Ball's inductive argument and the PL inequality to obtain
Proposition. Let $1 \leq j \leq k$ be two integers, where $k \geq 2$. For any integrable functions $f_{i}: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}_{+}, i=1, \ldots, k$, satisfying S_{j}-polarity condition with respect to some decreasing function $\rho: \mathbb{R} \rightarrow[0, \infty]$, it holds

$$
\prod_{i=1}^{k} \int_{\mathbb{R}_{+}^{n}} f_{i}\left(x_{i}\right) d x_{i} \leq\left(\int_{\mathbb{R}_{+}^{n}} \rho\left(\binom{k}{j}\|u\|_{j}^{j}\right)^{\frac{1}{k}} d u\right)^{k}
$$

- One can replace \mathbb{R}_{+}^{n} by \mathbb{R}^{n} if f_{1}, \ldots, f_{k} are unconditional.
- Use Keith Ball's inductive argument and the PL inequality to obtain
Proposition. Let $1 \leq j \leq k$ be two integers, where $k \geq 2$. For any integrable functions $f_{i}: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}_{+}, i=1, \ldots, k$, satisfying S_{j}-polarity condition with respect to some decreasing function $\rho: \mathbb{R} \rightarrow[0, \infty]$, it holds

$$
\prod_{i=1}^{k} \int_{\mathbb{R}_{+}^{n}} f_{i}\left(x_{i}\right) d x_{i} \leq\left(\int_{\mathbb{R}_{+}^{n}} \rho\left(\binom{k}{j}\|u\|_{j}^{j}\right)^{\frac{1}{k}} d u\right)^{k}
$$

- One can replace \mathbb{R}_{+}^{n} by \mathbb{R}^{n} if f_{1}, \ldots, f_{k} are unconditional.
- Implies the corresponding statement for convex bodies.
- Use Keith Ball's inductive argument and the PL inequality to obtain
Proposition. Let $1 \leq j \leq k$ be two integers, where $k \geq 2$. For any integrable functions $f_{i}: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}_{+}, i=1, \ldots, k$, satisfying S_{j}-polarity condition with respect to some decreasing function $\rho: \mathbb{R} \rightarrow[0, \infty]$, it holds

$$
\prod_{i=1}^{k} \int_{\mathbb{R}_{+}^{n}} f_{i}\left(x_{i}\right) d x_{i} \leq\left(\int_{\mathbb{R}_{+}^{n}} \rho\left(\binom{k}{j}\|u\|_{j}^{j}\right)^{\frac{1}{k}} d u\right)^{k}
$$

- One can replace \mathbb{R}_{+}^{n} by \mathbb{R}^{n} if f_{1}, \ldots, f_{k} are unconditional.
- Implies the corresponding statement for convex bodies.

Proof of equivalence

- " \Leftarrow " trivial.
- " \Rightarrow " We can assume that $\lim _{t \rightarrow \infty} \rho(t)=0, \rho$ is continuous, strictly decreasing and that $\lim _{t \rightarrow 0^{+}} \rho(t)=\infty$.

Proof of equivalence

- " \Leftarrow " trivial.
- " \Rightarrow " We can assume that $\lim _{t \rightarrow \infty} \rho(t)=0, \rho$ is continuous, strictly decreasing and that $\lim _{t \rightarrow 0^{+}} \rho(t)=\infty$.
- Define the (not necessarily convex) sets $K_{i}\left(r_{i}\right):=\left\{x_{i} \in \mathbb{R}^{n}: f_{i}\left(x_{i}\right) \geq r_{i}\right\}, r_{i} \geq 0$. From \mathcal{S}_{j}-polarity condition one obtains that, for $x_{i} \in K_{i}\left(r_{i}\right), i=1, \ldots, k$, it holds

$$
r_{1} \ldots r_{k} \leq \prod_{i=1}^{k} f_{i}\left(x_{i}\right) \leq \rho\left(\mathcal{S}_{j}\left(x_{1}, \ldots, x_{k}\right)\right)
$$

Proof of equivalence

- " \Leftarrow " trivial.
- " \Rightarrow " We can assume that $\lim _{t \rightarrow \infty} \rho(t)=0, \rho$ is continuous, strictly decreasing and that $\lim _{t \rightarrow 0^{+}} \rho(t)=\infty$.
- Define the (not necessarily convex) sets $K_{i}\left(r_{i}\right):=\left\{x_{i} \in \mathbb{R}^{n}: f_{i}\left(x_{i}\right) \geq r_{i}\right\}, r_{i} \geq 0$. From \mathcal{S}_{j}-polarity condition one obtains that, for $x_{i} \in K_{i}\left(r_{i}\right), i=1, \ldots, k$, it holds

$$
r_{1} \ldots r_{k} \leq \prod_{i=1}^{k} f_{i}\left(x_{i}\right) \leq \rho\left(\mathcal{S}_{j}\left(x_{1}, \ldots, x_{k}\right)\right)
$$

- Thus,

$$
\mathcal{S}_{j}\left(x_{1}, \ldots, x_{k}\right) \leq \rho^{-1}\left(r_{1} \cdots r_{k}\right) .
$$

Proof of equivalence

- " \Leftarrow " trivial.
- " \Rightarrow " We can assume that $\lim _{t \rightarrow \infty} \rho(t)=0, \rho$ is continuous, strictly decreasing and that $\lim _{t \rightarrow 0^{+}} \rho(t)=\infty$.
- Define the (not necessarily convex) sets $K_{i}\left(r_{i}\right):=\left\{x_{i} \in \mathbb{R}^{n}: f_{i}\left(x_{i}\right) \geq r_{i}\right\}, r_{i} \geq 0$. From \mathcal{S}_{j}-polarity condition one obtains that, for $x_{i} \in K_{i}\left(r_{i}\right), i=1, \ldots, k$, it holds

$$
r_{1} \ldots r_{k} \leq \prod_{i=1}^{k} f_{i}\left(x_{i}\right) \leq \rho\left(\mathcal{S}_{j}\left(x_{1}, \ldots, x_{k}\right)\right)
$$

- Thus,

$$
\mathcal{S}_{j}\left(x_{1}, \ldots, x_{k}\right) \leq \rho^{-1}\left(r_{1} \cdots r_{k}\right)
$$

- \mathcal{S}_{j} is homogeneous of order $j \Rightarrow \mathcal{S}_{j}\left(\lambda x_{1}, \cdots, \lambda x_{k}\right) \leq\binom{ k}{j}$, where $\lambda:=\binom{k}{j}^{\frac{1}{j}} \rho^{-1}\left(r_{1} \cdots r_{k}\right)^{-\frac{1}{j}}$.

Proof of equivalence

- " \Leftarrow " trivial.
- " \Rightarrow " We can assume that $\lim _{t \rightarrow \infty} \rho(t)=0, \rho$ is continuous, strictly decreasing and that $\lim _{t \rightarrow 0^{+}} \rho(t)=\infty$.
- Define the (not necessarily convex) sets $K_{i}\left(r_{i}\right):=\left\{x_{i} \in \mathbb{R}^{n}: f_{i}\left(x_{i}\right) \geq r_{i}\right\}, r_{i} \geq 0$. From \mathcal{S}_{j}-polarity condition one obtains that, for $x_{i} \in K_{i}\left(r_{i}\right), i=1, \ldots, k$, it holds

$$
r_{1} \ldots r_{k} \leq \prod_{i=1}^{k} f_{i}\left(x_{i}\right) \leq \rho\left(\mathcal{S}_{j}\left(x_{1}, \ldots, x_{k}\right)\right)
$$

- Thus,

$$
\mathcal{S}_{j}\left(x_{1}, \ldots, x_{k}\right) \leq \rho^{-1}\left(r_{1} \cdots r_{k}\right)
$$

- \mathcal{S}_{j} is homogeneous of order $j \Rightarrow \mathcal{S}_{j}\left(\lambda x_{1}, \cdots, \lambda x_{k}\right) \leq\binom{ k}{j}$, where $\lambda:=\binom{k}{j}^{\frac{1}{j}} \rho^{-1}\left(r_{1} \cdots r_{k}\right)^{-\frac{1}{j}}$.
- \Rightarrow (if j-Santaló conjecture holds)

$$
\begin{aligned}
\left|\lambda K_{1}\left(r_{1}\right)\right| \cdots\left|\lambda K_{k}\left(r_{k}\right)\right| & \leq\left|\operatorname{conv}\left(\lambda K_{1}\left(r_{1}\right)\right)\right| \cdots\left|\operatorname{conv}\left(\lambda K_{k}\left(r_{k}\right)\right)\right| \\
& \leq\left|B_{j}^{n}\right|^{k}
\end{aligned}
$$

- \Rightarrow

$$
\left(\left|K_{1}\left(r_{1}\right)\right| \ldots\left|K_{k}\left(r_{k}\right)\right|\right)^{1 / k} \leq\binom{ k}{j}^{-\frac{n}{j}}\left|B_{j}^{n}\right| \rho^{-1}\left(r_{1} \cdots r_{k}\right)^{\frac{k n}{j}}
$$

- $\mathrm{PL} \Rightarrow$

$$
\prod_{i=1}^{k} \int_{\mathbb{R}^{n}} f_{i}\left(x_{i}\right) d x_{i}=\prod_{i=1}^{k} \int_{0}^{\infty}\left|k_{i}\left(r_{i}\right)\right| d r_{i}
$$

Proof of equivalence

- \Rightarrow (if j-Santaló conjecture holds)

$$
\begin{aligned}
\left|\lambda K_{1}\left(r_{1}\right)\right| \cdots\left|\lambda K_{k}\left(r_{k}\right)\right| & \leq\left|\operatorname{conv}\left(\lambda K_{1}\left(r_{1}\right)\right)\right| \cdots\left|\operatorname{conv}\left(\lambda K_{k}\left(r_{k}\right)\right)\right| \\
& \leq\left|B_{j}^{n}\right|^{k} .
\end{aligned}
$$

- \Rightarrow

$$
\left(\left|K_{1}\left(r_{1}\right)\right| \ldots\left|K_{k}\left(r_{k}\right)\right|\right)^{1 / k} \leq\binom{ k}{j}^{-\frac{n}{j}}\left|B_{j}^{n}\right| \rho^{-1}\left(r_{1} \cdots r_{k}\right)^{\frac{k n}{j}}
$$

- $\mathrm{PL} \Rightarrow$

$$
\begin{aligned}
\prod_{i=1}^{k} \int_{\mathbb{R}^{n}} f_{i}\left(x_{i}\right) d x_{i} & =\prod_{i=1}^{k} \int_{0}^{\infty}\left|K_{i}\left(r_{i}\right)\right| d r_{i} \\
& \leq\binom{ k}{j}^{-\frac{k n}{j}}\left|B_{j}^{n}\right|^{k}\left(\int_{0}^{\infty} \rho^{-1}\left(r^{k}\right)^{\frac{n}{j}} d r\right)^{k}
\end{aligned}
$$

Proof of equivalence

On the other hand,

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}} \rho\left(\binom{k}{j}\|u\|_{j}^{j}\right)^{1 / k} d u \\
= & \int_{0}^{\infty}\left|\left\{u: \rho\left(\binom{k}{j}\|u\|_{j}^{j}\right) \geq t^{k}\right\}\right| d t \\
= & \int_{0}^{\infty}\left|\left\{u:\|u\|_{j} \leq\left(\binom{k}{j}^{-1} \rho^{-1}\left(t^{k}\right)\right)^{\frac{1}{j}}\right\}\right| d t \\
= & \binom{k}{j}^{-\frac{n}{j}}\left|B_{j}^{n}\right| \int_{0}^{\infty} \rho^{-1}\left(t^{k}\right)^{\frac{n}{j}} d t .
\end{aligned}
$$

The case $j=k$

- For $x \in \mathbb{R}^{n}$, write $x=(\widetilde{x}, r)$, where $\widetilde{x} \in \mathbb{R}^{n-1}$ and $r \in \mathbb{R}$.
- For a set $A \subseteq \mathbb{R}^{n}$ and a number $r \in \mathbb{R}$, set

$$
A(r):=\left\{\tilde{x} \in \mathbb{R}^{n-1}:(\tilde{x}, r) \in A\right\} .
$$

The case $j=k$

- For $x \in \mathbb{R}^{n}$, write $x=(\widetilde{x}, r)$, where $\widetilde{x} \in \mathbb{R}^{n-1}$ and $r \in \mathbb{R}$.
- For a set $A \subseteq \mathbb{R}^{n}$ and a number $r \in \mathbb{R}$, set

$$
A(r):=\left\{\tilde{x} \in \mathbb{R}^{n-1}:(\tilde{x}, r) \in A\right\}
$$

- The Steiner symmetrization of a convex body K with repsect to $e_{n}^{\perp}=R^{n-1}$ is given by
$s t_{e_{n}^{\frac{1}{n}}}(K)=\left\{\left(\tilde{x}, \frac{r-r^{\prime}}{2}\right) \in \mathbb{R}^{n}: \tilde{x} \in P_{e_{n}^{\frac{1}{n}}}(K)\right.$, and $\left.(\tilde{x}, r),\left(\tilde{x}, r^{\prime}\right) \in K\right\}$

The case $j=k$

- For $x \in \mathbb{R}^{n}$, write $x=(\widetilde{x}, r)$, where $\widetilde{x} \in \mathbb{R}^{n-1}$ and $r \in \mathbb{R}$.
- For a set $A \subseteq \mathbb{R}^{n}$ and a number $r \in \mathbb{R}$, set

$$
A(r):=\left\{\tilde{x} \in \mathbb{R}^{n-1}:(\tilde{x}, r) \in A\right\} .
$$

- The Steiner symmetrization of a convex body K with repsect to $e_{n}^{\perp}=R^{n-1}$ is given by

$$
s t_{e_{n}^{\frac{1}{n}}}(K)=\left\{\left(\tilde{x}, \frac{r-r^{\prime}}{2}\right) \in \mathbb{R}^{n}: \tilde{x} \in P_{e_{n}^{\frac{1}{n}}}(K), \text { and }(\tilde{x}, r),\left(\tilde{x}, r^{\prime}\right) \in K\right\} .
$$

The case $j=k$

The case $j=k$:

- For symmetric convex bodies $K_{1}, K_{3}, \ldots, K_{k}$, set $\left(K_{1}, K_{3}, \ldots, K_{k}\right)_{j}^{o}$:
$=\left\{x_{2} \in \mathbb{R}^{n}: \mathcal{S}_{j}\left(x_{1}, x_{2}, \ldots, x_{k}\right) \leq\binom{ k}{j}\right.$, for all $x_{i} \in K_{i}$ with $\left.i \neq 2\right\}$.
That is, the largest convex set S, s.t. $K_{1}, S, K_{3}, \ldots, K_{k}$ satisfy \mathcal{E}_{j}-polarity condition.
- We may assume that $K_{2}=\left(K_{1}, K_{3}, \ldots, K_{k}\right)_{k}^{o}$.

The case $j=k$

The case $j=k$:

- For symmetric convex bodies $K_{1}, K_{3}, \ldots, K_{k}$, set $\left(K_{1}, K_{3}, \ldots, K_{k}\right)_{j}^{o}$:
$=\left\{x_{2} \in \mathbb{R}^{n}: \mathcal{S}_{j}\left(x_{1}, x_{2}, \ldots, x_{k}\right) \leq\binom{ k}{j}\right.$, for all $x_{i} \in K_{i}$ with $\left.i \neq 2\right\}$.
That is, the largest convex set S, s.t. $K_{1}, S, K_{3}, \ldots, K_{k}$ satisfy \mathcal{E}_{j}-polarity condition.
- We may assume that $K_{2}=\left(K_{1}, K_{3}, \ldots, K_{k}\right)_{k}^{o}$.
- Our goal: To prove that

$$
\left|K_{1}\right|\left|K_{2}\right| \ldots\left|K_{k}\right| \leq\left|s t_{e_{n}^{\frac{1}{n}}} K_{1}\right|\left|K_{2}^{\prime}\right|\left|K_{3}\right| \ldots\left|K_{k}\right|,
$$

where $K_{2}^{\prime}=\left(s t_{e_{n}^{\perp}} K_{1}, K_{3}, \ldots, K_{k}\right)_{k}^{o}$.

The case $j=k$

The case $j=k$:

- For symmetric convex bodies $K_{1}, K_{3}, \ldots, K_{k}$, set $\left(K_{1}, K_{3}, \ldots, K_{k}\right)_{j}^{o}$:
$=\left\{x_{2} \in \mathbb{R}^{n}: \mathcal{S}_{j}\left(x_{1}, x_{2}, \ldots, x_{k}\right) \leq\binom{ k}{j}\right.$, for all $x_{i} \in K_{i}$ with $\left.i \neq 2\right\}$.
That is, the largest convex set S, s.t. $K_{1}, S, K_{3}, \ldots, K_{k}$ satisfy \mathcal{E}_{j}-polarity condition.
- We may assume that $K_{2}=\left(K_{1}, K_{3}, \ldots, K_{k}\right)_{k}^{o}$.
- Our goal: To prove that

$$
\left|K_{1}\right|\left|K_{2}\right| \ldots\left|K_{k}\right| \leq\left|s t_{e_{n}^{\frac{1}{n}}} K_{1}\right|\left|K_{2}^{\prime}\right|\left|K_{3}\right| \ldots\left|K_{k}\right|,
$$

where $K_{2}^{\prime}=\left(s t_{e_{n}^{\perp}} K_{1}, K_{3}, \ldots, K_{k}\right)_{k}^{o}$.

The case $j=k$

- Since Steiner symmetrization preserves volume, it suffices to prove that $\left|K_{2}\right| \leq\left|K_{2}^{\prime}\right|$.
- Recall:

$$
K_{2}(r):=\left\{\tilde{x} \in \mathbb{R}^{n-1}:(\tilde{x}, r) \in K_{2}\right\} .
$$

The case $j=k$

- Since Steiner symmetrization preserves volume, it suffices to prove that $\left|K_{2}\right| \leq\left|K_{2}^{\prime}\right|$.
- Recall:

$$
K_{2}(r):=\left\{\tilde{x} \in \mathbb{R}^{n-1}:(\tilde{x}, r) \in K_{2}\right\} .
$$

- By Brunn-Minkowski and Fubini, it suffices to show that

$$
\frac{K_{2}(r)+K_{2}(-r)}{2} \subseteq K_{2}^{\prime}(r)
$$

The case $j=k$

- Since Steiner symmetrization preserves volume, it suffices to prove that $\left|K_{2}\right| \leq\left|K_{2}^{\prime}\right|$.
- Recall:

$$
K_{2}(r):=\left\{\tilde{x} \in \mathbb{R}^{n-1}:(\tilde{x}, r) \in K_{2}\right\} .
$$

- By Brunn-Minkowski and Fubini, it suffices to show that

$$
\frac{K_{2}(r)+K_{2}(-r)}{2} \subseteq K_{2}^{\prime}(r)
$$

The case $j=k$

Let $\tilde{x}_{2} \in K_{2}(r)$ and $\tilde{x}_{2}^{\prime} \in K_{2}(-r)$. Then, for all $\left(\tilde{x}_{i}, r_{i}\right) \in K_{i}$, $i=3, \ldots, k$, and for all $\left(\tilde{x}_{1}, r_{1}\right),\left(\tilde{x}_{1}, r_{1}^{\prime}\right) \in K_{1}$, it holds

$$
\begin{equation*}
\mathcal{S}_{k}\left(\left(\tilde{x}_{1}, r_{1}\right),\left(\tilde{x}_{2}, r\right),\left(\tilde{x}_{3}, r_{3}\right), \ldots,\left(\tilde{x}_{k}, r_{k}\right)\right) \leq\binom{ k}{k}=1 \tag{4}
\end{equation*}
$$

and

$$
\begin{align*}
& \mathcal{S}_{k}\left(\left(\tilde{x}_{1},-r_{1}^{\prime}\right),\left(\tilde{x}_{2}^{\prime}, r\right),\left(\tilde{x}_{3}, r_{3}\right), \ldots,\left(\tilde{x}_{k}, r_{k}\right)\right) \\
= & \mathcal{S}_{k}\left(\left(\tilde{x}_{1}, r_{1}^{\prime}\right),\left(\tilde{x}_{2}^{\prime},-r\right),\left(\tilde{x}_{3}, r_{3}\right), \ldots,\left(\tilde{x}_{k}, r_{k}\right)\right) \leq\binom{ k}{k}=1 .(\tag{5}
\end{align*}
$$

The case $j=k$

Averaging (4) and (5) gives

$$
\mathcal{S}_{k}\left(\left(\tilde{x}_{1}, \frac{r_{1}-r_{1}^{\prime}}{2}\right),\left(\frac{\tilde{x}_{2}+\tilde{x}_{2}^{\prime}}{2}, r\right),\left(\tilde{x}_{3}, r_{3}\right), \ldots,\left(\tilde{x}_{k}, r_{k}\right)\right) \leq 1,
$$

for all $\left(\tilde{x}_{i}, r_{i}\right) \in K_{i}, i=3, \ldots, k$, and for all $\left(\tilde{x}_{1}, r_{1}\right),\left(\tilde{x}_{1}, r_{1}^{\prime}\right) \in K_{1}$.
Thus, $\frac{\tilde{x}_{2}+\tilde{x}_{2}^{\prime}}{2} \in K_{2}^{\prime}(r)$ which proves the desired inclusion.

- Repeat the same argument wrt all coordinate hyperplanes to replace K_{1} by an unconditional U_{1}.

The case $j=k$

Averaging (4) and (5) gives

$$
\mathcal{S}_{k}\left(\left(\tilde{x}_{1}, \frac{r_{1}-r_{1}^{\prime}}{2}\right),\left(\frac{\tilde{x}_{2}+\tilde{x}_{2}^{\prime}}{2}, r\right),\left(\tilde{x}_{3}, r_{3}\right), \ldots,\left(\tilde{x}_{k}, r_{k}\right)\right) \leq 1,
$$

for all $\left(\tilde{x}_{i}, r_{i}\right) \in K_{i}, i=3, \ldots, k$, and for all $\left(\tilde{x}_{1}, r_{1}\right),\left(\tilde{x}_{1}, r_{1}^{\prime}\right) \in K_{1}$.
Thus, $\frac{\tilde{x}_{2}+\tilde{x}_{2}^{\prime}}{2} \in K_{2}^{\prime}(r)$ which proves the desired inclusion.

- Repeat the same argument wrt all coordinate hyperplanes to replace K_{1} by an unconditional U_{1}.
- Repeat the same process wrt to (the new) K_{2} and K_{3} to replace K_{2} by an unconditional U_{2} and so on.

Averaging (4) and (5) gives

$$
\mathcal{S}_{k}\left(\left(\tilde{x}_{1}, \frac{r_{1}-r_{1}^{\prime}}{2}\right),\left(\frac{\tilde{x}_{2}+\tilde{x}_{2}^{\prime}}{2}, r\right),\left(\tilde{x}_{3}, r_{3}\right), \ldots,\left(\tilde{x}_{k}, r_{k}\right)\right) \leq 1,
$$

for all $\left(\tilde{x}_{i}, r_{i}\right) \in K_{i}, i=3, \ldots, k$, and for all $\left(\tilde{x}_{1}, r_{1}\right),\left(\tilde{x}_{1}, r_{1}^{\prime}\right) \in K_{1}$.
Thus, $\frac{\tilde{x}_{2}+\tilde{x}_{2}^{\prime}}{2} \in K_{2}^{\prime}(r)$ which proves the desired inclusion.

- Repeat the same argument wrt all coordinate hyperplanes to replace K_{1} by an unconditional U_{1}.
- Repeat the same process wrt to (the new) K_{2} and K_{3} to replace K_{2} by an unconditional U_{2} and so on.
- When all $K_{1}, \ldots K_{n-1}$ are replaced by unconditional $U_{1}, \ldots U_{n-1}$, then $\left(U_{1}, \ldots, U_{n-1}\right)_{k}^{\circ}$ is also unconditional. The result follows from the unconditional case. \square

Averaging (4) and (5) gives

$$
\mathcal{S}_{k}\left(\left(\tilde{x}_{1}, \frac{r_{1}-r_{1}^{\prime}}{2}\right),\left(\frac{\tilde{x}_{2}+\tilde{x}_{2}^{\prime}}{2}, r\right),\left(\tilde{x}_{3}, r_{3}\right), \ldots,\left(\tilde{x}_{k}, r_{k}\right)\right) \leq 1,
$$

for all $\left(\tilde{x}_{i}, r_{i}\right) \in K_{i}, i=3, \ldots, k$, and for all $\left(\tilde{x}_{1}, r_{1}\right),\left(\tilde{x}_{1}, r_{1}^{\prime}\right) \in K_{1}$.
Thus, $\frac{\tilde{x}_{2}+\tilde{x}_{2}^{\prime}}{2} \in K_{2}^{\prime}(r)$ which proves the desired inclusion.

- Repeat the same argument wrt all coordinate hyperplanes to replace K_{1} by an unconditional U_{1}.
- Repeat the same process wrt to (the new) K_{2} and K_{3} to replace K_{2} by an unconditional U_{2} and so on.
- When all $K_{1}, \ldots K_{n-1}$ are replaced by unconditional $U_{1}, \ldots U_{n-1}$, then $\left(U_{1}, \ldots, U_{n-1}\right)_{k}^{\circ}$ is also unconditional. The result follows from the unconditional case. \square

j even and K_{3}, \ldots, K_{k} unconditional

- The proof is the same.
- Based on the identity

j even and K_{3}, \ldots, K_{k} unconditional

- The proof is the same.
- Based on the identity

$$
\begin{array}{r}
s_{j}\left(r_{1},-r_{2}, \ldots,-r_{k}\right)=s_{j}\left(-r_{1}, r_{2}, \ldots, r_{k}\right) \\
\left(\text { recall } s_{k}\left(r_{1},-r_{2}, r_{3}, \ldots, r_{k}\right)=s_{k}\left(-r_{1}, r_{2}, r_{3}, \ldots, r_{k}\right)\right)
\end{array}
$$

j even and K_{3}, \ldots, K_{k} unconditional

- The proof is the same.
- Based on the identity

$$
\begin{array}{r}
s_{j}\left(r_{1},-r_{2}, \ldots,-r_{k}\right)=s_{j}\left(-r_{1}, r_{2}, \ldots, r_{k}\right) \\
\left(\text { recall } s_{k}\left(r_{1},-r_{2}, r_{3}, \ldots, r_{k}\right)=s_{k}\left(-r_{1}, r_{2}, r_{3}, \ldots, r_{k}\right)\right)
\end{array}
$$

- Does not hold if j is odd.

j even and K_{3}, \ldots, K_{k} unconditional

- The proof is the same.
- Based on the identity

$$
s_{j}\left(r_{1},-r_{2}, \ldots,-r_{k}\right)=s_{j}\left(-r_{1}, r_{2}, \ldots, r_{k}\right)
$$

(recall $s_{k}\left(r_{1},-r_{2}, r_{3}, \ldots, r_{k}\right)=s_{k}\left(-r_{1}, r_{2}, r_{3}, \ldots, r_{k}\right)$).

- Does not hold if j is odd.
- One can replace r_{3}, \ldots, r_{k} by $-r_{3}, \ldots,-r_{k}$ in the corresponding expressions because of the unconditionality of K_{3}, \ldots, K_{k}.

j even and K_{3}, \ldots, K_{k} unconditional

- The proof is the same.
- Based on the identity

$$
s_{j}\left(r_{1},-r_{2}, \ldots,-r_{k}\right)=s_{j}\left(-r_{1}, r_{2}, \ldots, r_{k}\right)
$$

$$
\left(\text { recall } s_{k}\left(r_{1},-r_{2}, r_{3}, \ldots, r_{k}\right)=s_{k}\left(-r_{1}, r_{2}, r_{3}, \ldots, r_{k}\right)\right)
$$

- Does not hold if j is odd.
- One can replace r_{3}, \ldots, r_{k} by $-r_{3}, \ldots,-r_{k}$ in the corresponding expressions because of the unconditionality of K_{3}, \ldots, K_{k}.

Ball's functional for many sets

- Ball's functional:

$$
B(K):=\int_{K} \int_{K^{o}}\langle x, y\rangle^{2} d x d y
$$

- $B(K)$ is invariant under non-singular linear maps.

Ball's functional for many sets

- Ball's functional:

$$
B(K):=\int_{K} \int_{K^{o}}\langle x, y\rangle^{2} d x d y
$$

- $B(K)$ is invariant under non-singular linear maps.
- Ball's conjecture: If K is symmetric, then $B(K) \leq B\left(B_{2}^{n}\right)$.

Ball's functional for many sets

- Ball's functional:

$$
B(K):=\int_{K} \int_{K^{o}}\langle x, y\rangle^{2} d x d y
$$

- $B(K)$ is invariant under non-singular linear maps.
- Ball's conjecture: If K is symmetric, then $B(K) \leq B\left(B_{2}^{n}\right)$.
- Theorem (Ball '88): Conjecture is true if K is unconditional.

Ball's functional for many sets

- Ball's functional:

$$
B(K):=\int_{K} \int_{K^{o}}\langle x, y\rangle^{2} d x d y
$$

- $B(K)$ is invariant under non-singular linear maps.
- Ball's conjecture: If K is symmetric, then $B(K) \leq B\left(B_{2}^{n}\right)$.
- Theorem (Ball '88): Conjecture is true if K is unconditional.
- Implies (in a few lines) the Blaschke-Santaló inequality.

Ball's functional for many sets

- Ball's functional:

$$
B(K):=\int_{K} \int_{K^{o}}\langle x, y\rangle^{2} d x d y
$$

- $B(K)$ is invariant under non-singular linear maps.
- Ball's conjecture: If K is symmetric, then $B(K) \leq B\left(B_{2}^{n}\right)$.
- Theorem (Ball '88): Conjecture is true if K is unconditional.
- Implies (in a few lines) the Blaschke-Santaló inequality.

Ball's functional for many sets

- Ball's functional:

$$
B(K):=\int_{K} \int_{K^{o}}\langle x, y\rangle^{2} d x d y
$$

- $B(K)$ is invariant under non-singular linear maps.
- Ball's conjecture: If K is symmetric, then $B(K) \leq B\left(B_{2}^{n}\right)$.
- Theorem (Ball '88): Conjecture is true if K is unconditional.
- Implies (in a few lines) the Blaschke-Santaló inequality.

Ball's functional for many sets

- Let $\mathcal{D}(n)$ be the set of all orthonormal basis' in \mathbb{R}^{n}. For $k \geq 2, j \in\{2, \ldots, k\}$ and $\left\{\epsilon_{m}\right\} \in \mathcal{D}(n)$, define

$$
\mathcal{B}_{j}\left(K_{1}, \ldots, K_{k},\left\{\epsilon_{m}\right\}\right):=\sum_{m=1}^{n} \prod_{i=1}^{k} \int_{K_{i}}\left|\left\langle x_{i}, \epsilon_{m}\right\rangle\right|^{j} d x_{i}
$$

- Ball's functional for many sets:

$$
\mathcal{B}_{j}\left(K_{1}, \ldots, K_{k}\right):=\min _{\left\{\epsilon_{m}\right\} \in \mathcal{D}(n)} \mathcal{B}_{j}\left(K_{1}, \ldots, K_{k},\left\{\epsilon_{m}\right\}\right) .
$$

Ball's functional for many sets

- Let $\mathcal{D}(n)$ be the set of all orthonormal basis' in \mathbb{R}^{n}. For $k \geq 2, j \in\{2, \ldots, k\}$ and $\left\{\epsilon_{m}\right\} \in \mathcal{D}(n)$, define

$$
\mathcal{B}_{j}\left(K_{1}, \ldots, K_{k},\left\{\epsilon_{m}\right\}\right):=\sum_{m=1}^{n} \prod_{i=1}^{k} \int_{K_{i}}\left|\left\langle x_{i}, \epsilon_{m}\right\rangle\right|^{j} d x_{i}
$$

- Ball's functional for many sets:

$$
\mathcal{B}_{j}\left(K_{1}, \ldots, K_{k}\right):=\min _{\left\{\epsilon_{m}\right\} \in \mathcal{D}(n)} \mathcal{B}_{j}\left(K_{1}, \ldots, K_{k},\left\{\epsilon_{m}\right\}\right)
$$

- Conjecture: If K_{1}, \ldots, K_{k} are symmetric, satisfying \mathcal{E}_{j}-polarity condition, then

$$
\mathcal{B}_{j}\left(K_{1}, \ldots, K_{k}\right) \leq \mathcal{B}_{j}\left(B_{j}^{n}, \ldots, B_{j}^{n}\right)
$$

Ball's functional for many sets

- Let $\mathcal{D}(n)$ be the set of all orthonormal basis' in \mathbb{R}^{n}. For $k \geq 2, j \in\{2, \ldots, k\}$ and $\left\{\epsilon_{m}\right\} \in \mathcal{D}(n)$, define

$$
\mathcal{B}_{j}\left(K_{1}, \ldots, K_{k},\left\{\epsilon_{m}\right\}\right):=\sum_{m=1}^{n} \prod_{i=1}^{k} \int_{K_{i}}\left|\left\langle x_{i}, \epsilon_{m}\right\rangle\right|^{j} d x_{i}
$$

- Ball's functional for many sets:

$$
\mathcal{B}_{j}\left(K_{1}, \ldots, K_{k}\right):=\min _{\left\{\epsilon_{m}\right\} \in \mathcal{D}(n)} \mathcal{B}_{j}\left(K_{1}, \ldots, K_{k},\left\{\epsilon_{m}\right\}\right)
$$

- Conjecture: If K_{1}, \ldots, K_{k} are symmetric, satisfying \mathcal{E}_{j}-polarity condition, then

$$
\begin{equation*}
\mathcal{B}_{j}\left(K_{1}, \ldots, K_{k}\right) \leq \mathcal{B}_{j}\left(B_{j}^{n}, \ldots, B_{j}^{n}\right) \tag{6}
\end{equation*}
$$

Ball's functional for many sets-some results

- It is equivalent to Ball's conjecture if $k=2$.
- Holds in the unconditional case.
- Implies the j-Santaló conjecture.

Thank you for your attension!!!!!!

