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Polarity

Let K be a symmetric (i.e. K = −K ) convex body (i.e.
compact convex with non-empty interior in Rn).

The polar body of K is the convex body given

K ◦ := {x ∈ Rn : ⟨x , y⟩ ≤ 1,∀y ∈ K}.

In other words, if K is the unit ball of an n-dimensional
normed space, then K ◦ is the unit ball of its dual.

E.g. (Bn
p )

◦ = Bn
q , where 1/p + 1/q = 1 and p ∈ [1,∞].

(K ◦)◦ = K .

If K is not necessarily convex, then K ◦ = (convK )◦.
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Santaló inequality

(Linear equivariance) For T ∈ GL(n), (TK )◦ = T−∗(K ◦).

Thus, the quantity |K ||K ◦| is invariant under non-singular
linear maps.

Continuity and Blaschke’s Selection Theorem ⇒ the volume
product

|K ||K ◦|

attains a minimum and a maximum.

Maximum (Blaschke-Santaló inequality):

|K ||K ◦| ≤ |Bn
2 |2,

with equality if and only if K is an ellipsoid.

Minimum (Mahler’s Conjecture):
|K ||K ◦| ≤ |Cube||Polar of the cube|.
True for n = 2, 3.
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A trivial generalization

Recall
K ◦ = {x ∈ Rn : ⟨x , y⟩ ≤ 1}.

Thus, if K1, K2 are symmetric sets (not necessarily convex) with

⟨x , y⟩ ≤ 1, ∀x ∈ K1, ∀y ∈ K2,

then the Santaló inequality gives

|K1||K2| ≤ |K1||K ◦
1 | ≤ |Bn

2 |2.
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A functional version

Let f : Rn → R+ be a function. Its polar is defined as

f ◦(x) : = inf
y∈Rn

(e−⟨x ,y⟩/f (y))

= e−L(− log f )(x),

where L denotes the Legendre transform.

Theorem (Ball ’86, Artstein-Klartag-Milman ’05, Lehec ’09):
If f is even, then∫

Rn

f (x)dx

∫
Rn

f ◦(x)dx ≤
∫
Rn

e−|x |2/2dx

∫
Rn

(e−|x |2/2)◦dx

=

(∫
Rn

e−|x |2/2dx

)2

= (2π)n.
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A functional version

Again, if f1, f2 (both even) satisfy f1(x1)f2(x2) ≤ e−⟨x1,x2⟩, for
all (x1, x2) ∈ K1 × K2, then∫

Rn

f1

∫
Rn

f2 ≤
(∫

Rn

e−|x |2/2dx

)2

.

Recovers the classical Blaschke-Santaló inequality.

And follows from it.
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A non-trivial generalization

Theorem (Fradelizi-Meyer ’07): Let f1, f2 : Rn → R+ be even
and integrable and ρ : R → R+ be measurable. If
f1(x1)f2(x2) ≤ ρ(⟨x1, x2⟩), for all x1, x2 ∈ Rn, then∫

Rn

f1

∫
Rn

f2 ≤
(∫

Rn

ρ(|x |2)1/2dx
)2

.

Recovers the (previous) functional Santaló inequality by
setting ρ(t) = e−t .

Recovers the classical Blaschke-Santaló inequality by setting

fi := 1Ki
, i = 1, 2 and ρ(t) :=

{
+∞, t < 0

1[0,1] (t) t ≥ 0
,
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Functional Santaló for many functions (?)

Conjecture

(Kolesnikov-Werner ’20) Let k ≥ 2 be an integer, ρ : R → R+ be a
decreasing function and f1, . . . , fk : Rn → R+ be even integrable
functions, such that

k∏
i=1

fi (xi ) ≤ ρ

 ∑
1≤i<l≤k

⟨xi , xl⟩

 , ∀x1, . . . , xk ∈ Rn. (1)

Then, it holds

k∏
i=1

∫
Rn

fi (xi ) dxi ≤

(∫
Rn

ρ

(
k(k − 1)

2
∥u∥22

)1/k

du

)k

.

Theorem (Kolesnikov-Werner): True if all f ′i s are unconditional.
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What is polarity for many sets or functions?

Who knows?

Recall polarity condition: For k = 2, ⟨x1, x2⟩ ≤ 1, for all
x1 ∈ K1, x2 ∈ K2 or f1(x1)f2(x2) ≤ ρ(⟨x1, x2⟩), for all
x1, x2 ∈ Rn.

This is natural because of axiomatic characterization of
polarity (or duality) due to Gruber, Boroczky-Schneider,
Artstein-Milman.

Maybe we are more free to choose for k > 2?
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j-polarity condition

For j ∈ {1, . . . , k} and for reals r1, . . . , rk , set

sj(r1, . . . , rk) :=
∑

1≤i1<...<ij≤k

ri1 · · · rij .

For x1, . . . , xk ∈ Rn, with xi = (xi (1), . . . , xi (n)), set

Sj(x1, . . . , xn) :=
n∑

l=1

sj(x1(l), . . . , xk(l))

and

Ej :=
Sj(k
j

) .
S2(x1, . . . , xk) =

∑
1≤i<l≤k⟨xi , xl⟩.
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j-polarity condition

We say that the sets K1, . . . ,Kk satisfy Ej -polarity condition if
for all x1 ∈ K1, . . . , xk ∈ Kk , it holds

Ej(x1, . . . , xk) ≤ 1.

We say that the functions f1, . . . , fk satisfy Sj -polarity
condition with respect to a decreasing function ρ, if for all
x1, . . . , xk ∈ Rn, it holds

f1(x1) . . . fk(xk) ≤ ρ(Sj(x1, . . . , xk).
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j-Santaló conjectures

Conjecture

(j-Santaló conjecture) Let 2 ≤ j ≤ k , where k ≥ 2. If K1, . . . ,Kk

are symmetric convex bodies, satisfying Ej -polarity condition, then

k∏
i=1

|Ki | ≤ |Bn
j |k . (2)

Conjecture

(Functional j-Santaló conjecture) Let 2 ≤ j ≤ k, where k ≥ 2. If
f1, . . . , fk : Rn → R+ are even integrable functions, satisfying
Sj -polarity condition with respect to some decreasing function
ρ : R → [0,∞], then

k∏
i=1

∫
Rn

fi (xi ) dxi ≤

(∫
Rn

ρ

((
k

j

)
∥u∥jj

)1/k

du

)k

. (3)
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Remarks

If j = 2, then the Functional j-Santaló conjecture is just the
Kolesnikov-Werner conjecture.

Functional j-Santaló ⇒ j-Santaló. Indeed, take
fi := 1Ki

, i = 1, . . . , k

and ρ(t) :=

{
+∞, t < 0

1[0,1]

((k
j

)−1
t
)

t ≥ 0
.

We exclude the case j = 1, because the quantity |K1| . . . |Kk |
can be unbounded for bodies K1, . . . ,Kk satisfying E1-polarity
condition. This can be seen by taking all Ki to be the
symmetric slab {x ∈ Rn : |x1 + . . .+ xn| ≤ 1}.
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Main (partial) results

Theorem

The j-Santaló Conjecture holds in the following cases:

(i) K1, . . . ,Kk are unconditional convex bodies.

(ii) j = k.

(iii) j is even and K3, . . . ,Kk are unconditional convex bodies.

Moreover, in all three cases, (2) is sharp for
K1 = K2 = . . . = Kk = Bn

j .

Theorem

The functional j-Santaló Conjecture holds in the following cases:

(i) f1, . . . , fk are unconditional functions.

(ii) j = k.

(iii) j is even and f3, . . . , fk are unconditional functions.
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Idea of Proof

Work with bodies instead of functions.

This is because of
Proposition. The two conjectures (even for objects with
certain symmetries) are equivalent.

Then, one performs Steiner symmetrization a la Meyer-Pazor.
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The unconditional case

Theorem(1-dimensional multiplicative Prékopa-Leindler
inequality). If some integrable functions h, hi : R+ → R+,
i = 1, . . . , k , satisfy

k∏
i=1

hi (ti )
1
k ≤ h

(
k∏

i=1

t
1
k
i

)
, ∀ti > 0, i = 1 . . . , k,

then it holds

k∏
i=1

(∫
R+

hi (ti ) dti

) 1
k

≤
∫
R+

h(t) dt.
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The unconditional case

Use Keith Ball’s inductive argument and the PL inequality to
obtain
Proposition. Let 1 ≤ j ≤ k be two integers, where k ≥ 2.
For any integrable functions fi : Rn

+ → R+, i = 1, . . . , k ,
satisfying Sj -polarity condition with respect to some
decreasing function ρ : R → [0,∞], it holds

k∏
i=1

∫
Rn
+

fi (xi ) dxi ≤

(∫
Rn
+

ρ

((
k

j

)
∥u∥jj

) 1
k

du

)k

.

One can replace Rn
+ by Rn if f1, . . . , fk are unconditional.

Implies the corresponding statement for convex bodies.
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Proof of equivalence

“⇐” trivial.

“⇒” We can assume that limt→∞ ρ(t) = 0, ρ is continuous,
strictly decreasing and that limt→0+ ρ(t) = ∞.

Define the (not necessarily convex) sets
Ki (ri ) := {xi ∈ Rn : fi (xi ) ≥ ri}, ri ≥ 0. From Sj -polarity
condition one obtains that, for xi ∈ Ki (ri ), i = 1, . . . , k, it
holds

r1 . . . rk ≤
k∏

i=1

fi (xi ) ≤ ρ (Sj(x1, . . . , xk)) .

Thus,
Sj(x1, . . . , xk) ≤ ρ−1(r1 · · · rk).

Sj is homogeneous of order j ⇒ Sj(λx1, · · · , λxk) ≤
(k
j

)
,

where λ :=
(k
j

) 1
j ρ−1(r1 · · · rk)−

1
j .
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Proof of equivalence

⇒ (if j-Santaló conjecture holds)

|λK1(r1)| · · · |λKk(rk)| ≤ |conv(λK1(r1))| · · · |conv(λKk(rk))|
≤ |Bn

j |k .

⇒

(|K1(r1)| . . . |Kk(rk)|)1/k ≤
(
k

j

)− n
j

|Bn
j |ρ−1(r1 · · · rk)

kn
j .

PL⇒
k∏

i=1

∫
Rn

fi (xi ) dxi =
k∏

i=1

∫ ∞

0
|Ki (ri )| dri

≤
(
k

j

)− kn
j

|Bn
j |k
(∫ ∞

0
ρ−1(rk)

n
j dr

)k

.
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⇒ (if j-Santaló conjecture holds)

|λK1(r1)| · · · |λKk(rk)| ≤ |conv(λK1(r1))| · · · |conv(λKk(rk))|
≤ |Bn

j |k .

⇒

(|K1(r1)| . . . |Kk(rk)|)1/k ≤
(
k

j

)− n
j

|Bn
j |ρ−1(r1 · · · rk)

kn
j .

PL⇒
k∏

i=1

∫
Rn

fi (xi ) dxi =
k∏

i=1

∫ ∞

0
|Ki (ri )| dri

≤
(
k

j

)− kn
j

|Bn
j |k
(∫ ∞

0
ρ−1(rk)

n
j dr

)k

.

Christos Saroglou (joint work with P. Kalantzopoulos) On a j-Santaló Conjecture



Proof of equivalence

On the other hand,∫
Rn

ρ

((
k

j

)
∥u∥jj

)1/k

du

=

∫ ∞

0

∣∣∣{u : ρ

((
k

j

)
∥u∥jj

)
≥ tk

}∣∣∣ dt
=

∫ ∞

0

∣∣∣{u : ∥u∥j ≤

((
k

j

)−1

ρ−1(tk)

) 1
j }∣∣∣ dt

=

(
k

j

)− n
j

|Bn
j |
∫ ∞

0
ρ−1(tk)

n
j dt. □
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The case j = k

For x ∈ Rn, write x = (x̃ , r), where x̃ ∈ Rn−1 and r ∈ R.
For a set A ⊆ Rn and a number r ∈ R, set

A(r) := {x̃ ∈ Rn−1 : (x̃ , r) ∈ A}.

The Steiner symmetrization of a convex body K with repsect
to e⊥n = Rn−1 is given by

ste⊥n (K ) =
{(

x̃ ,
r − r ′

2

)
∈ Rn : x̃ ∈ Pe⊥n

(K ), and (x̃ , r), (x̃ , r ′) ∈ K
}
.
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The case j = k

The case j = k :

For symmetric convex bodies K1,K3, . . . ,Kk , set
(K1,K3, . . . ,Kk)

o
j :

=
{
x2 ∈ Rn : Sj(x1, x2, . . . , xk) ≤

(
k

j

)
, for all xi ∈ Ki with i ̸= 2

}
.

That is, the largest convex set S , s.t. K1,S ,K3, . . . ,Kk satisfy
Ej -polarity condition.

We may assume that K2 = (K1,K3, . . . ,Kk)
o
k .

Our goal: To prove that

|K1||K2| . . . |Kk | ≤ |ste⊥n K1||K ′
2||K3| . . . |Kk |,

where K ′
2 = (ste⊥n K1,K3, . . . ,Kk)

o
k .
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The case j = k

Since Steiner symmetrization preserves volume, it suffices to
prove that |K2| ≤ |K ′

2|.
Recall:

K2(r) := {x̃ ∈ Rn−1 : (x̃ , r) ∈ K2}.

By Brunn-Minkowski and Fubini, it suffices to show that

K2(r) + K2(−r)

2
⊆ K ′

2(r).
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The case j = k

Let x̃2 ∈ K2(r) and x̃ ′2 ∈ K2(−r). Then, for all (x̃i , ri ) ∈ Ki ,
i = 3, . . . , k , and for all (x̃1, r1), (x̃1, r

′
1) ∈ K1, it holds

Sk((x̃1, r1), (x̃2, r), (x̃3, r3), . . . , (x̃k , rk)) ≤
(
k

k

)
= 1 (4)

and

Sk((x̃1,−r ′1), (x̃
′
2, r), (x̃3, r3), . . . , (x̃k , rk))

= Sk((x̃1, r
′
1), (x̃

′
2,−r), (x̃3, r3), . . . , (x̃k , rk)) ≤

(
k

k

)
= 1. (5)
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The case j = k

Averaging (4) and (5) gives

Sk

((
x̃1,

r1 − r ′1
2

)
,
( x̃2 + x̃ ′2

2
, r
)
, (x̃3, r3), . . . , (x̃k , rk)

)
≤ 1,

for all (x̃i , ri ) ∈ Ki , i = 3, . . . , k , and for all (x̃1, r1), (x̃1, r
′
1) ∈ K1.

Thus,
x̃2+x̃ ′2

2 ∈ K ′
2(r) which proves the desired inclusion.

Repeat the same argument wrt all coordinate hyperplanes to
replace K1 by an unconditional U1.

Repeat the same process wrt to (the new) K2 and K3 to
replace K2 by an unconditional U2 and so on.

When all K1, . . .Kn−1 are replaced by unconditional
U1, . . .Un−1, then (U1, . . . ,Un−1)

◦
k is also unconditional. The

result follows from the unconditional case. □
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j even and K3, . . . ,Kk unconditional

The proof is the same.

Based on the identity

sj(r1,−r2, . . . ,−rk) = sj(−r1, r2, . . . , rk)

(recall sk(r1,−r2, r3, . . . , rk) = sk(−r1, r2, r3, . . . , rk)).

Does not hold if j is odd.

One can replace r3, . . . , rk by −r3, . . . ,−rk in the
corresponding expressions because of the unconditionality of
K3, . . . ,Kk .
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Ball’s functional for many sets

Ball’s functional:

B(K ) :=

∫
K

∫
Ko

⟨x , y⟩2 dx dy .

B(K ) is invariant under non-singular linear maps.

Ball’s conjecture: If K is symmetric, then B(K ) ≤ B(Bn
2 ).

Theorem (Ball ’88): Conjecture is true if K is unconditional.

Implies (in a few lines) the Blaschke-Santaló inequality.
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Ball’s functional for many sets

Ball’s functional:

B(K ) :=

∫
K

∫
Ko

⟨x , y⟩2 dx dy .

B(K ) is invariant under non-singular linear maps.

Ball’s conjecture: If K is symmetric, then B(K ) ≤ B(Bn
2 ).

Theorem (Ball ’88): Conjecture is true if K is unconditional.

Implies (in a few lines) the Blaschke-Santaló inequality.
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Ball’s functional for many sets

Let D(n) be the set of all orthonormal basis’ in Rn. For
k ≥ 2, j ∈ {2, . . . , k} and {ϵm} ∈ D(n), define

Bj(K1, . . . ,Kk , {ϵm}) :=
n∑

m=1

k∏
i=1

∫
Ki

|⟨xi , ϵm⟩|j dxi .

Ball’s functional for many sets:

Bj(K1, . . . ,Kk) := min
{ϵm}∈D(n)

Bj(K1, . . . ,Kk , {ϵm}).

Conjecture: If K1, . . . ,Kk are symmetric, satisfying Ej -polarity
condition, then

Bj(K1, . . . ,Kk) ≤ Bj(B
n
j , . . . ,B

n
j ). (6)
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Ball’s functional for many sets-some results

It is equivalent to Ball’s conjecture if k = 2.

Holds in the unconditional case.

Implies the j-Santaló conjecture.

Christos Saroglou (joint work with P. Kalantzopoulos) On a j-Santaló Conjecture



Thank you!!!!!!

Thank you for your attension!!!!!!
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