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Part 1: Statement of the main theorems



The (B) inequality

Let γ denote the standard Gaussian in Rn, dγ
dx = 1

(2π)n/2 e−|x |
2/2. For us a

convex body K is a closed convex set. K is symmetric if K = −K .
Given (t1, t2, . . . , tn) = t ∈ Rn we define

etK =
{(

et1x1, et2xn, . . . , etnxn
)

: (x1, . . . , xn) ∈ K
}
.

Theorem (Cordero-Erausquin, Fradelizi, Maurey)
For every symmetric convex body K ⊆ Rn and t, s ∈ Rn

γ
(
e

t+s
2 K
)
≥
√
γ(etK )γ(esK )

(the strong (B) inequality). In particular, for all a, b > 0 we have

γ
(√

abK
)
≥
√
γ(aK )γ(bK )

(the weak (B) inequality).



Some History

γ
(
e

t+s
2 K
)
≥
√
γ(etK )γ(esK ) γ

(√
abK

)
≥
√
γ(aK )γ(bK )

I The weaker inequality γ
( a+b

2 K
)
≥
√
γ(aK )γ(bK ) is a corollary of

Brunn–Minkowski (Prékopa, Leindler, Borell).
I The weak (B) inequality was originally conjectured by Banaszczyk

and popularized by Latała.
I Nayar and Tkocz showed that the symmetry assumption is necessary.
I It is natural to ask if γ can be replaced by other measures. It is

conjectured that every even log-concave measure satisfy the weak
inequality (µ is log-concave if dµ

dx = e−V , V convex). This
conjecture is known in dimension n = 2
(Böröczky–Lutwak–Yang–Zhang, Saroglou, Livne Bar-On).

I In general dimension, Eskenazis, Nayar and Tkocz proved that
certain Gaussian mixtures satisfy the strong (B) inequality.

I With Cordero-Erausquin we proved in particular that rotation
invariant log-concave measures satisfy the strong (B) inequality.



Equality case – the weak version

For today we study only the Gaussian case, and the question is when do
we have equality in the (B) inequality.

Theorem (Herscovici–Livshyts–R.–Volberg)
Let K be a symmetric convex body, and suppose

γ
(√

abK
)

=
√
γ(aK )γ(bK )

for b > a > 0. Then either K = Rn, or K has an empty interior.

One cannot deduce this theorem directly from the proof of
Cordero-Erausquin–Fradelizi–Maurey, as their proof includes an
approximation step. It can be adopted to yield the equality case when K
is smooth (probably), but not for general K . Instead, we prove a stronger
stability theorem.



Stability theorem – the weak version

We denote by r(K ) the inradius of K , i.e. the largest number r > 0 such
that rBn

2 ⊆ K .

Theorem (Herscovici–Livshyts–R.–Volberg)
Let K be a symmetric convex body, and suppose that

γ
(√

abK
)
≤ (1 + ε)

√
γ(aK )γ(bK )

for b > a > 0 and ε > 0 small enough. Then either r(K ) ≥ ϕa,b,n(ε) or
r(K ) ≤ 1

ϕa,b,n(ε) , for an explicit function ϕa,b,n such that

lim
ε→0+

ϕa,b,n(ε) =∞.

When proving such a theorem one may assume K is smooth. The
equality case then follows by letting ε→ 0.



Quantitative estimates

A more precise statement: If

γ
(√

abK
)
≤ (1 + ε)

√
γ(aK )γ(bK )

then either

r(K ) ≥ 1
b

√√√√log
(
c log (b/a)2

n2ε

)
or

r(K ) ≤ C
√
n

a log
(
b
a

)− 2
n+1

ε
1

n+1 .

The lower bound r ?
√

log 1
ε is actually sharp, as can be seeing by taking

K to be a strip. The upper bound r . ε
1

n+1 is probably not sharp, but
one cannot do better then r .

√
ε.



Equality case – the strong version

For the strong version one has to be a bit more careful, even with the
equality case:

Theorem (Herscovici–Livshyts–R.–Volberg)
Let K be a symmetric convex body, and suppose

γ
(
e

t+s
2 K
)

=
√
γ(etK )γ(esK )

for t, s ∈ Rn. Define

Ht,s = span {ei : 1 ≤ i ≤ n and ti = si} .

Then either K has an empty interior, or (more generally) K = K0 × H⊥t,s
for K0 ⊆ Ht,s .
So in particular if ti 6= si for all 1 ≤ i ≤ n then either K has an empty
interior or K = Rn.



Stability case – the strong version

To prove a stability theorem for the strong (B) inequality, we need a way
to express the idea that “K is close to being a cylinder”.

Recall that if K is a convex body with non-empty interior, then at almost
every point x ∈ ∂K there exists a unique supporting hyperplane to K at
x , and we denote the normal to this hyperplane by nx .

Lemma
Fix a subspace H ⊆ Rn. Assume K has non-empty interior, and that
nx ∈ H for almost every x ∈ ∂K. Then there exists a convex body
K0 ⊆ H such that K = K0 × H⊥.



Stability case – the strong version

Theorem (Herscovici–Livshyts–R.–Volberg, Informal Version)
Let K be a symmetric convex body, and suppose

γ
(
e

t+s
2 K
)
≤ (1 + ε)

√
γ(etK )γ(esK )

for t, s ∈ Rn. Then either:
1. r(K ) is “large”.
2. r(K ) is “small”.
3. Define

Ht,s,δ = span {ei : 1 ≤ i ≤ n and |ti − si | < δ} .

Then at “most” points x ∈ ∂K (in the sense of measure), the normal
nx is “almost” in Ht,s,δ (in the sense that ProjH⊥

t,s,δ
(nx ) ≈ 0).



Part 2: An application – Maximal Gaussian Measure position



Maximal Gaussian measure position

Let K be a symmetric convex body, compact with non-empty interior.
We say that K is in Maximal Gaussian Measure position if

γ(K ) = min {γ(T (K )) : T ∈ SL(n)} .

This is an interesting position for two reasons:

Theorem (Bobkov)
K is in Maximal Gaussian Measure position if and only if the measure

γK (A) = γ (A ∩ K )
γ(K )

is isotropic, i.e.
∫
xixjdγK = C · δij for a constant C > 0.



Maximal Gaussian Measure position – Contd.

γ(K ) = min {γ(T (K )) : T ∈ SL(n)}

Theorem (Bobkov)
If K is in Maximal Gaussian Measure position, then it is in M-position.
Explicitly, let D be the ball with |K | = |D|, then

|K ∩ D| ≥ C−n |D| |K◦ ∩ D| ≥ C−n |D|
|K + D| ≤ Cn |D| |K◦ + D| ≤ Cn |D|

for an absolute constant C > 0.

The M-position is very useful in Asymptotic Geometric Analysis, but is
very non-unique. The Maximal Gaussian Measure position can be a
canonical choice for an M-position, if it is unique.



Uniqueness of Maximal Gaussian Measure position

Corollary (Of our theorem, see also Artstein–Katzin and
Artstein–Putterman)
The Maximal Gaussian Measure position of a symmetric convex body is
unique up to rotations.

Proof.
If not, there exists a convex body K and a vector x 6= 0 such that
|exK | = |K | and both K and exK are in Maximal Gaussian Measure
position. By the (B) inequality

γ
(
e x

2K
)
≥
√
γ(K )γ (exK ), (,)

so e x
2K is also in Maximal Gaussian Measure position. But this means

that we have equality in (,), which is impossible by our theorem.



Part 3: Stability in Poincaré inequalities



On the proof of Cordero–Fradelizi–Maurey

The weak (B) inequality,

γ
(√

abK
)
≥
√
γ(aK )γ(bK ),

just means that ρ(t) = log γ (etK ) is concave. The condition ρ′′(0) ≤ 0
turns out to be the same as∫

|x |4 dγK −
(∫
|x |2 dγK

)2
≤ 2

∫
|x |2 dγK

(recall that γK (A) = γ(A∩K)
γ(K) ). Something more general is true:

Theorem (Cordero–Fradelizi–Maurey)
For every symmetric convex body K and every even function f : Rn → R,∫

f 2dγK −
(∫

f dγK

)2
≤ 1

2

∫
|∇f |2 dγK .



Stability in the even Poincaré inequality

Our stability theorem follows from

Theorem
Let K be a symmetric convex body, and assume that∫

|x |4 dγK −
(∫
|x |2 dγK

)2
≥ 2

∫
|x |2 dγK − ε.

Then either r(K ) ≥
√

log c
n2ε or r(K ) ≤ C

√
nε 1

n+1 .

For the stability of the strong (B) theorem we have a similar theorem for
〈Tx , x〉 instead of |x |2, and then the bounds depend on the smallest
singular value of T . We do not have (and do not need) stability of the
even Poincaré inequality for non-quadratic functions.



The proof structure

The even Poincaré inequality∫
f 2dγK −

(∫
f dγK

)2
≤ 1

2

∫
|∇f |2 dγK

is proved by a nowadays standard L2-argument, which reduces it to the
usual Poincaré inequality for non-necessarily-even functions∫

g2dγK −
(∫

gdγK

)2
≤
∫
|∇g |2 dγK .

In the same way, our proof reduces the stability of the even Poincaré
inequality to a previous stability result of Livshyts (slightly improved in
our paper).



Stability in the usual Poincaré inequality

Theorem (Livshyts (essentially) )
Assume for some function g : Rn → R we have∫

g2dγK −
(∫

gdγK

)2
≥
∫
|∇g |2 dγK − ε.

Then there exists a linear function `(x) = 〈x , θ〉+ v such that:
1. ‖g − `‖W 1,2(γK ) ≤ 4ε.

2.
∫
∂K 〈nx , θ〉2 dγ∂K ≤ 2(n+1)γ(K)

r(K) · ε.

Here γ∂K is the measure on ∂K with density (2π)− n
2 e−|x |2/2 with respect

to the (n − 1)-dimensional Hausdorff measure.



The isoperimetric inequality
We will not explain the L2 proof in more details. Instead, we mention
that we do not conclude directly that r(K ) is “very large” or “very small”.
Instead, we obtain

γ(K )∫
r(K)Bn

2
|x |2 dγ

+ γ(K )
r(K )γ+(∂K ) ≥

c
n2ε ,

and this condition should be analyzed. To bound the second term, the
Gaussian isoperimetric inequality makes a surprising appearance.

Proposition
If γ(K ) ≥ 1

2 then

γ+ (∂K ) ≥ 1√
2π

e− 1
2 r(K)2.

If γ(K ) ≤ 1
2 then

γ+ (∂K ) ≥
(
c · r(K )√

n

)n
e− 1

2 r(K)2.



Part 4: Coffee Break!


