# Projection bodies in Spherical and Hyperbolic spaces

Reporter: Youjiang Lin (Chongqing Technology and Business University and University of Florence) Joint work with A. Cianchi and Y. Wu

CONVEX GEOMETRY - ANALYTIC ASPECTS Cortona, Italian June Monday 26th - June Friday 30th 2023

#### Basic facts from Euclidean convex geometry

- 2 Basic facts from Spherical geometry
- 3 Spherical Steiner symmetrization
- Spherical projection body
- 5 Spherical projection inequality

## Basic facts from Euclidean convex geometry

For  $K \in \mathcal{K}(\mathbb{R}^n)$ , *K* is uniquely determined by its support function  $h_K$  defined by

$$h_{\mathcal{K}}(x) := \max\{x \cdot y : y \in \mathcal{K}\}, \quad x \in \mathbb{R}^n.$$

The support function is homogeneous of degree 1, i.e.,

$$h_{\mathcal{K}}(rx) = rh_{\mathcal{K}}(x), \text{ for } r > 0.$$
(1)

For  $K \in \mathcal{K}_{o}(\mathbb{R}^{n})$ , its radial function is defined by

$$\rho_{\mathcal{K}}(\boldsymbol{x}) := \max\{\boldsymbol{r} > \boldsymbol{0} : \boldsymbol{r} \boldsymbol{x} \in \mathcal{K}\}, \quad \boldsymbol{x} \in \mathbb{R}^n \setminus \{\boldsymbol{o}\}.$$
(2)

The radial function is homogeneous of degree -1, i.e.,

$$\rho_{\mathcal{K}}(rx) = \frac{1}{r} \rho_{\mathcal{K}}(x), \text{ for } r > 0.$$
(3)

## Basic facts from Euclidean convex geometry

For  $K \in \mathcal{K}_o(\mathbb{R}^n)$ , its polar body is defined by

$$K^* := \{ y \in \mathbb{R}^n : y \cdot x \le 1 \text{ for any } x \in K \}.$$

It is well-known that

$$(K^*)^* = K. (4$$



In the plane, a polygon *K* has the same number of sides as its polar body  $K^*$ . And the straight line *OA* passing through the origin and vertex *A* is perpendicular to the edge corresponding to  $K^*$ , and |OA||OB| = 1.



A compact set  $K \subset \mathbb{R}^n$  is a *star-shaped set* with respect to the  $x_0 \in K$  if the intersection of every straight line through  $x_0$  with K is a line segment. The radial function  $\rho_{K,x_0}(\cdot) : \mathbb{R}^n \setminus \{o\} \to \mathbb{R}$  is defined by

$$\rho_{\mathcal{K},z}(x) := \max\{r \ge 0 : x_0 + rx \in \mathcal{K}\}.$$
(5)

If  $\rho_{K,x_0}$  is strictly positive and continuous, then we call *K* a star body with respect to the  $x_0$ , denotes the class of star bodies in  $\mathbb{R}^n$  by  $\mathcal{S}_{x_0}(\mathbb{R}^n)$ .



If  $K \subset \mathbb{R}^n$  is a star body with respect to each point of ball  $B_o(r)$ , then we say K is a star body with respect to a ball. The class of star bodies with respect to ball  $B_o(r)$  will be denoted by  $S_B(\mathbb{R}^n)$ . It is clear that  $\mathcal{K}_o(\mathbb{R}^n) \subset S_B(\mathbb{R}^n)$ , i.e., any convex body with the origin as its interior is a star body with respect to a ball.



For  $K \in S_B(\mathbb{R}^n)$ , its Petty projection body, denoted by  $\Pi(K)$ , is defined with its support function:

$$h_{\Pi(K)}(z) := \frac{1}{2} \int_{\partial K} \left| \nu^{K}(x) \cdot z \right| d\mathcal{H}^{n-1}(x), \tag{6}$$

where  $\partial K$  denotes the boundary of K,  $\nu^{K}(x)$  denotes the unit outer normal vector of K at the boundary point  $x \in \partial K$ , "·" denotes the Euclidean scalar product and  $\mathcal{H}^{n-1}$  denotes the (n-1)-Hausdorff measure. The polar body of  $\Pi(K)$  will be denoted by  $\Pi^{*}(K)$  rather than  $(\Pi(K))^{*}$ .

Let  $\mathbb{R}^{n+1}$  denote (n + 1)-dimensional Euclidean space. We denote the Euclidean unit sphere in  $\mathbb{R}^{n+1}$  by  $\mathbb{S}^n$ ,  $n \ge 2$ . A set  $K \subseteq \mathbb{S}^n$  is called spherical convex if its radial extension

$$\operatorname{rad} K = \left\{ rv \in \mathbb{R}^{n+1} : r \ge 0 \text{ and } v \in K \right\}$$

is convex in  $\mathbb{R}^{n+1}$ . A closed convex subset of  $\mathbb{S}^n$  is called a spherical convex body. The set of convex bodies is denoted by  $\mathcal{K}(\mathbb{S}^n)$ .



The spherical distance  $d_s$  is given by  $d_s(u, v) = \arccos(u \cdot v)$  for  $u, v \in \mathbb{S}^n$ . For spherical compact sets  $K, L \subset \mathbb{S}^n$ , the spherical Hausdorff distance of K and L is defined by

$$d_{\mathcal{S}}(K,L) := \inf \left\{ r > 0 : K \subseteq L_r \text{ and } L \subseteq K_r \right\}, \tag{7}$$

where  $L_r$  denotes the spherical parallel set of L, which is defined by

$$L_r := \{ w \in \mathbb{S}^n : \text{ there exists } v \in L \text{ such that } d_s(w, v) \leq r \}.$$

For  $K \in \mathcal{K}_o(\mathbb{S}^n_+)$ , its spherical polar body  $K^\circ$  is defined by

$$K^{\circ} = \{ v \in \mathbb{S}^n : v \cdot x \le 0 \text{ for all } x \in K \}.$$
(8)

For  $K \in \mathcal{K}_o(\mathbb{S}^n_+)$ , we have

$$(K^{\circ})^{\circ} = K. \tag{9}$$



Sphere polar body

For  $K \in \mathcal{K}_o(\mathbb{S}^n_+)$ , the spherical support function  $h_s(K, \cdot) : \mathbb{S}^{n-1} \to (0, \frac{\pi}{2})$  of K is defined by

$$h_{s}(K, v) = \max\left\{ \operatorname{sgn}(v \cdot x) d_{s}\left(e_{n+1}, x \mid \mathbb{S}^{1}_{e_{n+1}, v}\right) : x \in K \right\}, \quad v \in \mathbb{S}^{n-1}, (10)$$

where  $\mathbb{S}^{1}_{e_{n+1},v}$  denotes the 1-sphere spanned by  $e_{n+1}$  and v, and  $x|\mathbb{S}^{1}_{e_{n+1},v} = \mathbb{S}^{1}_{e_{n+1},v} \cap \operatorname{conv}\left(\left(\mathbb{S}^{1}_{e_{n+1},v}\right)^{\circ}, x\right).$ 



For  $K \in \mathcal{K}_o(\mathbb{S}^n_+)$ , its spherical radial function is defined by

$$\rho_{s}(K, \mathbf{v}) := \max\left\{ \operatorname{sgn}(\mathbf{v} \cdot \mathbf{x}) d_{s}(e_{n+1}, \mathbf{x}) : \mathbf{x} \in K \cap \mathbb{S}^{1}_{e_{n+1}, \mathbf{v}} \right\}, \quad \mathbf{v} \in \mathbb{S}^{n-1}.(1)$$



The gnomonic projection  $g: \mathbb{S}^n_+ \to \mathbb{R}^n$  and the inverse gnomonic projection  $g^{-1}: \mathbb{R}^n \to \mathbb{S}^n_+$  are defined by

$$g(v) := rac{v}{e_{n+1} \cdot v} - e_{n+1}$$
 and  $g^{-1}(x) := rac{x + e_{n+1}}{\|x + e_{n+1}\|},$ 

respectively.



For a spherical compact set  $K \subset \mathbb{S}_+^n$ , if its gnomonic projection g(K) is a star body with respect to o in  $\mathbb{R}^n$ , then K is called as spherical star body with respect to  $e_{n+1}$ . If g(K) is a star body with respect to a ball  $B_o$  in  $\mathbb{R}^n$ , then K is called as spherical star body with respect to a spherical cap  $B_s$ . The set of spherical star bodies with respect to  $e_{n+1}$ is denoted by  $S_o(\mathbb{S}_+^n)$ . The set of spherical star bodies with respect to  $B_s$  is denoted by  $S_B(\mathbb{S}_+^n)$ .



For  $K \in S_o(\mathbb{S}^n_+)$  and  $v \in \mathbb{S}^{n-1}$ , its spherical Steiner symmetrization is defined by

$$\hat{S}_{v}(K) := g^{-1}\left(r_{K}S_{u}g(K)\right),$$

where  $r_{\mathcal{K}} \in (0, 1]$  such that

$$\mathcal{H}^n\left(\hat{\mathcal{S}}_{\mathbf{v}}(\mathbf{K})\right) = \mathcal{H}^n(\mathbf{K}).$$

## The spherical Steiner symmetrization has the following properties:

(i) If  $K \in \mathcal{K}_o(\mathbb{S}^n)$ , then  $\hat{S}_v K \in \mathcal{K}_o(\mathbb{S}^n)$ . (ii) If  $K \in \mathcal{S}_o(\mathbb{S}^n)$ , then  $\hat{S}_v K \in \mathcal{S}_o(\mathbb{S}^n)$ . (iii) If  $K \in \mathcal{S}_B(\mathbb{S}^n)$ , then  $\hat{S}_v K \in \mathcal{S}_B(\mathbb{S}^n)$ .

For  $K \in S_o(\mathbb{S}^n_+)$ , there exists a sequence of directions  $\{u_i\}_{i=1}^{\infty} \subset \mathbb{S}^{n-1}$  such that the sequence of successive spherical Steiner symmetrizations of *K* converges to  $K^*$  in spherical Hausdorff distance, i.e.,

$$\lim_{i\to\infty} d_{\mathcal{S}}(\hat{S}_{u_i}\cdots\hat{S}_{u_1}(K),K^{\bigstar}) = 0.$$
(12)

Here  $K^{\star}$  is the spherical symmetric rearrangement defined as following

$$K^{\bigstar} := \{ \boldsymbol{v} \in \mathbb{S}^n : \boldsymbol{d}_{\boldsymbol{s}}(\boldsymbol{v}, \boldsymbol{e}_{n+1}) \leq \alpha, \ \mathcal{H}^n(K) = \mathcal{H}^n(\boldsymbol{B}_{\boldsymbol{s}}(\alpha)) \}.$$
(13)

For  $K \in S_B(\mathbb{S}^n_+)$ , its spherical projection body  $\Pi_{\mathbb{S}}(K)$  is defined by

$$\Pi_{\mathbb{S}} \mathcal{K} := g^{-1} \left( \Pi g(\mathcal{K}) \right). \tag{14}$$

By the definition of spherical projection body, for  $u \in \mathbb{S}^{n-1}$ ,

$$\tan h(\Pi_{\mathbb{S}}K, u) = \frac{1}{2} \int_{\partial g(K)} \left| u \cdot \nu^{g(K)}(y) \right| d\mathcal{H}^{n-1}(y).$$
(15)

The following lemma shows that the spherical projection operator  $\Pi_{\mathbb{S}}$ :  $S_B(\mathbb{S}^n_+) \to \mathcal{K}_o(\mathbb{S}^n)$  is continuous.

#### Lemma

For a sequence of spherical star bodies  $\{K_i\}_{i=0}^{\infty} \subset S_B(\mathbb{S}^n_+)$ , if

$$\lim_{\to\infty} d_{s}(K_{i}, K_{0}) = 0, \qquad (16)$$

then

$$\lim_{i\to\infty} d_{s}(\Pi_{\mathbb{S}}K_{i},\Pi_{\mathbb{S}}K_{0})=0.$$
(17)

A (10) A (10)

Let  $\overline{O}(n + 1)$  denote the set of rotation transformations around the  $x_{n+1}$ -axis in  $\mathbb{R}^{n+1}$ . The following lemma shows the rotation invariance of the spherical projection operator.

#### Lemma

Let  $\phi \in \overline{O}(n+1)$  be a rotation transformation on  $\mathbb{R}^{n+1}$  and  $K \in S_B(\mathbb{S}^n)$ . Then

$$\Pi_{\mathbb{S}}(\phi K) = \phi \Pi_{\mathbb{S}} K. \tag{18}$$

#### Theorem

If  $K \in S_B(\mathbb{S}^n_+)$  and  $K^*$  is the spherical cap center at  $e_{n+1}$  with the same measure as K, then

$$\mathcal{H}^{n}\left(\Pi^{\circ}_{\mathbb{S}}(K)\right) \leq \mathcal{H}^{n}\left(\Pi^{\circ}_{\mathbb{S}}(K^{\bigstar})\right),$$
(19)

with the equality if and only if  $K = K^{\bigstar}$ .

First, we prove the following monotonicity on the spherical Steiner symmetrization.

#### Lemma

Let  $K \in S_B(\mathbb{S}^n_+)$ . Then

$$\mathcal{H}^{n}\left(\Pi^{\circ}_{\mathbb{S}}\left(\hat{\boldsymbol{S}}\boldsymbol{K}\right)\right) \geq \mathcal{H}^{n}\left(\Pi^{\circ}_{\mathbb{S}}\boldsymbol{K}\right),$$

(20)

with equality if and only if  $\hat{S}K = K$ .

Then we use the convergence of successive spherical Steiner symmetrizations, continuity of spherical projection operator and polar operator and the above monotonicity, we can prove the main theorem.

< 🗇 > < 🖻 > < 🖻 >

## Thank You!

Reporter: Youjiang Lin (Chongqing TechnologProjection bodies in Spherical and Hyperbolic

イロト イポト イヨト イヨト