Projection bodies in Spherical and Hyperbolic spaces

Reporter: Youjiang Lin
(Chongqing Technology and Business University and University of Florence) Joint work with A. Cianchi and Y. Wu

CONVEX GEOMETRY - ANALYTIC ASPECTS

Cortona, Italian
June Monday 26th - June Friday 30th 2023
(1) Basic facts from Euclidean convex geometry

2 Basic facts from Spherical geometry
(3) Spherical Steiner symmetrization

4 Spherical projection body
(5) Spherical projection inequality

Basic facts from Euclidean convex geometry

For $K \in \mathcal{K}\left(\mathbb{R}^{n}\right), K$ is uniquely determined by its support function h_{K} defined by

$$
h_{K}(x):=\max \{x \cdot y: y \in K\}, \quad x \in \mathbb{R}^{n}
$$

The support function is homogeneous of degree 1, i.e.,

$$
\begin{equation*}
h_{K}(r x)=r h_{K}(x), \text { for } r>0 \tag{1}
\end{equation*}
$$

For $K \in \mathcal{K}_{o}\left(\mathbb{R}^{n}\right)$, its radial function is defined by

$$
\begin{equation*}
\rho_{K}(x):=\max \{r>0: r x \in K\}, \quad x \in \mathbb{R}^{n} \backslash\{o\} \tag{2}
\end{equation*}
$$

The radial function is homogeneous of degree -1 , i.e.,

$$
\begin{equation*}
\rho_{K}(r x)=\frac{1}{r} \rho_{K}(x), \text { for } r>0 \tag{3}
\end{equation*}
$$

Basic facts from Euclidean convex geometry

For $K \in \mathcal{K}_{o}\left(\mathbb{R}^{n}\right)$, its polar body is defined by

$$
K^{*}:=\left\{y \in \mathbb{R}^{n}: y \cdot x \leq 1 \text { for any } x \in K\right\} .
$$

It is well-known that

$$
\begin{equation*}
\left(K^{*}\right)^{*}=K . \tag{4}
\end{equation*}
$$

Figure. The square and its polar body

Figure. The polar body of the cube

In the plane, a polygon K has the same number of sides as its polar body K^{*}. And the straight line $O A$ passing through the origin and vertex A is perpendicular to the edge corresponding to K^{*}, and $|O A||O B|=1$.

Figure. Convex polygon and its polar body in plan

A compact set $K \subset \mathbb{R}^{n}$ is a star-shaped set with respect to the $x_{0} \in K$ if the intersection of every straight line through x_{0} with K is a line segment. The radial function $\rho_{K, x_{0}}(\cdot): \mathbb{R}^{\eta} \backslash\{0\} \rightarrow \mathbb{R}$ is defined by

$$
\begin{equation*}
\rho_{K, z}(x):=\max \left\{r \geq 0: x_{0}+r x \in K\right\} . \tag{5}
\end{equation*}
$$

If $\rho_{K, x_{0}}$ is strictly positive and continuous, then we call K a star body with respect to the x_{0}, denotes the class of star bodies in \mathbb{R}^{n} by $\mathcal{S}_{X_{0}}\left(\mathbb{R}^{n}\right)$.

If $K \subset \mathbb{R}^{n}$ is a star body with respect to each point of ball $B_{0}(r)$, then we say K is a star body with respect to a ball. The class of star bodies with respect to ball $B_{o}(r)$ will be denoted by $\mathcal{S}_{B}\left(\mathbb{R}^{n}\right)$. It is clear that $\mathcal{K}_{o}\left(\mathbb{R}^{n}\right) \subset \mathcal{S}_{B}\left(\mathbb{R}^{n}\right)$, i.e., any convex body with the origin as its interior is a star body with respect to a ball.

Star body about B(r)

Basic facts from Euclidean convex geometry

For $K \in \mathcal{S}_{B}\left(\mathbb{R}^{n}\right)$, its Petty projection body, denoted by $\Pi(K)$, is defined with its support function:

$$
\begin{equation*}
h_{\Pi(K)}(z):=\frac{1}{2} \int_{\partial K}\left|\nu^{K}(x) \cdot z\right| d \mathcal{H}^{n-1}(x), \tag{6}
\end{equation*}
$$

where ∂K denotes the boundary of $K, \nu^{K}(x)$ denotes the unit outer normal vector of K at the boundary point $x \in \partial K$, "." denotes the Euclidean scalar product and \mathcal{H}^{n-1} denotes the ($n-1$)-Hausdorff measure. The polar body of $\Pi(K)$ will be denoted by $\Pi^{*}(K)$ rather than $(\Pi(K))^{*}$.

Basic facts from Spherical convex geometry

Let \mathbb{R}^{n+1} denote $(n+1)$-dimensional Euclidean space. We denote the Euclidean unit sphere in \mathbb{R}^{n+1} by $\mathbb{S}^{n}, n \geq 2$. A set $K \subseteq \mathbb{S}^{n}$ is called spherical convex if its radial extension

$$
\operatorname{rad} K=\left\{r v \in \mathbb{R}^{n+1}: r \geq 0 \text { and } v \in K\right\}
$$

is convex in \mathbb{R}^{n+1}. A closed convex subset of \mathbb{S}^{n} is called a spherical convex body. The set of convex bodies is denoted by $\mathcal{K}\left(\mathbb{S}^{n}\right)$.

Basic facts from Spherical convex geometry

The spherical distance d_{s} is given by $d_{s}(u, v)=\arccos (u \cdot v)$ for $u, v \in \mathbb{S}^{n}$. For spherical compact sets $K, L \subset \mathbb{S}^{n}$, the spherical Hausdorff distance of K and L is defined by

$$
\begin{equation*}
d_{s}(K, L):=\inf \left\{r>0: K \subseteq L_{r} \text { and } L \subseteq K_{r}\right\} \tag{7}
\end{equation*}
$$

where L_{r} denotes the spherical parallel set of L, which is defined by

$$
L_{r}:=\left\{w \in \mathbb{S}^{n}: \text { there exists } v \in L \text { such that } d_{s}(w, v) \leq r\right\}
$$

Basic facts from Spherical convex geometry

For $K \in \mathcal{K}_{o}\left(\mathbb{S}_{+}^{n}\right)$, its spherical polar body K° is defined by

$$
\begin{equation*}
K^{\circ}=\left\{v \in \mathbb{S}^{n}: v \cdot x \leq 0 \text { for all } x \in K\right\} \tag{8}
\end{equation*}
$$

For $K \in \mathcal{K}_{o}\left(\mathbb{S}_{+}^{n}\right)$, we have

$$
\begin{equation*}
\left(K^{\circ}\right)^{\circ}=K \tag{9}
\end{equation*}
$$

Sphere polar body

Basic facts from Spherical convex geometry

For $K \in \mathcal{K}_{o}\left(\mathbb{S}_{+}^{n}\right)$, the spherical support function $h_{s}(K, \cdot): \mathbb{S}^{n-1} \rightarrow$ ($0, \frac{\pi}{2}$) of K is defined by
$h_{s}(K, v)=\max \left\{\operatorname{sgn}(v \cdot x) d_{s}\left(e_{n+1}, x \mid \mathbb{S}_{e_{n+1}, v}^{1}\right): x \in K\right\}, \quad v \in \mathbb{S}^{n-1},(10$
where $\mathbb{S}_{e_{n+1}, v}^{1}$ denotes the 1 -sphere spanned by e_{n+1} and v, and
$x \mid \mathbb{S}_{e_{n+1}, v}^{1}=\mathbb{S}_{e_{n+1}, v}^{1} \cap \operatorname{conv}\left(\left(\mathbb{S}_{e_{n+1}, v}^{1}\right)^{\circ}, x\right)$.

Basic facts from Spherical convex geometry

For $K \in \mathcal{K}_{o}\left(\mathbb{S}_{+}^{n}\right)$, its spherical radial function is defined by
$\rho_{s}(K, v):=\max \left\{\operatorname{sgn}(v \cdot x) d_{s}\left(e_{n+1}, x\right): x \in K \cap \mathbb{S}_{e_{n+1}, v}^{1}\right\}, \quad v \in \mathbb{S}^{n-1} .(1$

Basic facts from Spherical convex geometry

The gnomonic projection $g: \mathbb{S}_{+}^{n} \rightarrow \mathbb{R}^{n}$ and the inverse gnomonic projection $g^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{S}_{+}^{n}$ are defined by

$$
g(v):=\frac{v}{e_{n+1} \cdot v}-e_{n+1} \text { and } g^{-1}(x):=\frac{x+e_{n+1}}{\left\|x+e_{n+1}\right\|}
$$

respectively.

Basic facts from Spherical convex geometry

For a spherical compact set $K \subset \mathbb{S}_{+}^{n}$, if its gnomonic projection $g(K)$ is a star body with respect to o in \mathbb{R}^{n}, then K is called as spherical star body with respect to e_{n+1}. If $g(K)$ is a star body with respect to a ball B_{0} in \mathbb{R}^{n}, then K is called as spherical star body with respect to a spherical cap B_{s}. The set of spherical star bodies with respect to e_{n+1} is denoted by $\mathcal{S}_{o}\left(\mathbb{S}_{+}^{n}\right)$. The set of spherical star bodies with respect to B_{s} is denoted by $\mathcal{S}_{B}\left(\mathbb{S}_{+}^{n}\right)$.

Spherical Steiner symmetrization

For $K \in \mathcal{S}_{0}\left(\mathbb{S}_{+}^{n}\right)$ and $v \in \mathbb{S}^{n-1}$, its spherical Steiner symmetrization is defined by

$$
\hat{S}_{v}(K):=g^{-1}\left(r_{K} S_{u} g(K)\right),
$$

where $r_{K} \in(0,1]$ such that

$$
\mathcal{H}^{n}\left(\hat{S}_{v}(K)\right)=\mathcal{H}^{n}(K)
$$

The spherical Steiner symmetrization has the following properties:

(i) If $K \in \mathcal{K}_{o}\left(\mathbb{S}^{n}\right)$, then $\hat{S}_{v} K \in \mathcal{K}_{o}\left(\mathbb{S}^{n}\right)$. (ii) If $K \in \mathcal{S}_{o}\left(\mathbb{S}^{n}\right)$, then $\hat{S}_{v} K \in \mathcal{S}_{0}\left(\mathbb{S}^{n}\right)$. (iii) If $K \in \mathcal{S}_{B}\left(\mathbb{S}^{n}\right)$, then $\hat{S}_{v} K \in \mathcal{S}_{B}\left(\mathbb{S}^{n}\right)$.

Spherical Steiner symmetrization

For $K \in \mathcal{S}_{0}\left(\mathbb{S}_{+}^{n}\right)$, there exists a sequence of directions $\left\{u_{i}\right\}_{i=1}^{\infty} \subset \mathbb{S}^{n-1}$ such that the sequence of successive spherical Steiner symmetrizations of K converges to K^{\star} in spherical Hausdorff distance, i.e.,

$$
\begin{equation*}
\lim _{i \rightarrow \infty} d_{s}\left(\hat{S}_{u_{i}} \cdots \hat{S}_{u_{1}}(K), K^{\star}\right)=0 \tag{12}
\end{equation*}
$$

Here K^{\star} is the spherical symmetric rearrangement defined as following

$$
\begin{equation*}
K^{\star}:=\left\{v \in \mathbb{S}^{n}: d_{s}\left(v, e_{n+1}\right) \leq \alpha, \quad \mathcal{H}^{n}(K)=\mathcal{H}^{n}\left(B_{s}(\alpha)\right)\right\} \tag{13}
\end{equation*}
$$

Spherical projection body

For $K \in \mathcal{S}_{B}\left(\mathbb{S}_{+}^{n}\right)$, its spherical projection body $\Pi_{\mathbb{S}}(K)$ is defined by

$$
\begin{equation*}
\Pi_{\mathbb{S}} K:=g^{-1}(\Pi g(K)) \tag{14}
\end{equation*}
$$

By the definition of spherical projection body, for $u \in \mathbb{S}^{n-1}$,

$$
\begin{equation*}
\tan h\left(\Pi_{\mathbb{S}} K, u\right)=\frac{1}{2} \int_{\partial g(K)}\left|u \cdot \nu^{g(K)}(y)\right| d \mathcal{H}^{n-1}(y) \tag{15}
\end{equation*}
$$

Spherical projection body

The following lemma shows that the spherical projection operator $\Pi_{\mathbb{S}}: \mathcal{S}_{B}\left(\mathbb{S}_{+}^{n}\right) \rightarrow \mathcal{K}_{o}\left(\mathbb{S}^{n}\right)$ is continuous.

Lemma

For a sequence of spherical star bodies $\left\{K_{i}\right\}_{i=0}^{\infty} \subset \mathcal{S}_{B}\left(\mathbb{S}_{+}^{n}\right)$, if

$$
\begin{equation*}
\lim _{i \rightarrow \infty} d_{s}\left(K_{i}, K_{0}\right)=0, \tag{16}
\end{equation*}
$$

then

$$
\begin{equation*}
\lim _{i \rightarrow \infty} d_{s}\left(\Pi_{\mathbb{S}} K_{i}, \Pi_{\mathbb{S}} K_{0}\right)=0 . \tag{17}
\end{equation*}
$$

Spherical projection body

Let $\bar{O}(n+1)$ denote the set of rotation transformations around the x_{n+1}-axis in \mathbb{R}^{n+1}. The following lemma shows the rotation invariance of the spherical projection operator.

Lemma

Let $\phi \in \overline{\mathrm{O}}(n+1)$ be a rotation transformation on \mathbb{R}^{n+1} and $K \in \mathcal{S}_{B}\left(\mathbb{S}^{n}\right)$. Then

$$
\begin{equation*}
\Pi_{\mathbb{S}}(\phi K)=\phi \Pi_{\mathbb{S}} K . \tag{18}
\end{equation*}
$$

Spherical projection inequality

Theorem

If $K \in \mathcal{S}_{B}\left(\mathbb{S}_{+}^{n}\right)$ and K^{\star} is the spherical cap center at e_{n+1} with the same measure as K, then

$$
\begin{equation*}
\mathcal{H}^{n}\left(\Pi_{\mathbb{S}}^{\circ}(K)\right) \leq \mathcal{H}^{n}\left(\Pi_{\mathbb{S}}^{\circ}\left(K^{\star}\right)\right), \tag{19}
\end{equation*}
$$

with the equality if and only if $K=K^{\star}$.

Spherical projection inequality

First, we prove the following monotonicity on the spherical Steiner symmetrization.

Lemma

Let $K \in \mathcal{S}_{B}\left(\mathbb{S}_{+}^{n}\right)$. Then

$$
\begin{equation*}
\mathcal{H}^{n}\left(\Pi_{\mathbb{S}}^{\circ}(\hat{S} K)\right) \geq \mathcal{H}^{n}\left(\Pi_{\mathbb{S}}^{\circ} K\right) \tag{20}
\end{equation*}
$$

with equality if and only if $\hat{S} K=K$.
Then we use the convergence of successive spherical Steiner symmetrizations, continuity of spherical projection operator and polar operator and the above monotonicity, we can prove the main theorem.

Thank You!

