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K and L convex bodies in R"and t > 0
Then Vol, (K + tL) is a homogeneous polynomial (in t) of degree n
and
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The coefficients V(K |[n — i],L[i]) are called the mixed volumes of K
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@ Mixed volume is translation invariant:
V(K[n—-1],L+a)=V(K[n—1],L), forae R".

@ Let BJ be the unit Euclidean ball in R". Then: the mean width of
K is given by

1

WV(Bg[n— 1], K).

wp(K) =
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@ K is said to be centrally symmetric if K = —K, and to be
symmetric if a translate is centrally symmetric.

@ A possible candidate for a “symmetric” version of K is
DK := K + (—K).

K is centrally symmetric if DK = 2K.

@ BM implies —

n _ Vol(DK)
< — 7
2's Voly(K) ’

with equality if, and only if, K is symmetric.
@ The Rogers-Shephard inequality shows the reverse direction:

Vi) = ()

with equality if, and only if, K is a n-dimensional simplex.
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Enter Rolf Schneider

@ The covariogram of K is

gk (x) = Vol (KN (K + X)).

@ Amazing fact: the support of gk is DK
(={xeR": KN (K +x) #D}).
@ Rolf Schneider: Define the mth order covariogram of K as

m
gk,m(X) = Voln <Kﬁ (K + Xi)) :
i=1
where X = (X1,...,Xm) € (R")™ = R".
@ The difference body of order m of K, D™(K), is a convex body in
R defined as the support of gk m.
°

Vol (K)~™Volom (D™ (K)) < (”m - ”) ,

n
with equality if, and only if, K is a n-dimensional simplex.
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Operator Hopping

@ Given a compact, star shaped set L its radial function is
pL(y) =sup{A >0:AyeL}.
@ Fix # € 8", the unit sphere. Then, Matheron tells us

d d
EgK(fG)’r:0+ = EVOIn(Km (K"’ re))‘r:0+ = —VOln,1 (PgLK),

where P, K is the orthogonal projection of K onto the
hyperplane through the origin orthogonal to 6.

@ Minkowski tells us that Vol,_1(P,.K) = nV(K[n—1],[0,6])

@ Aleksandrov tell us that V(K[n— 1], [0,6]) is convex function in 6.



The Polar Projection Body

@ The polar projection body of K, I1°K, is the centrally symmetric
convex body whose radial function is given by

prik(0) = nV(K[n 1], [0,6]).
@ Why centrally symmetric? Translation invariance!
Ptk (6) = nV(K[n—1],[0,6]) = nV(K[n— 1], [0,6]) = pri},c(~6)
@ Also, the fact that
Piie (i) (8) = nV(=K[n—1].[0,6]) = nV(K[n—1],[0,~6]) = pp} c(~6)

shows
I1°(—K) =1I°K.
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Let K be a convex body in R" and m € IN. For every direction
0=(61,...,.6m) €S" 1, let C_; = convo<;<m[0, —0;]. Then:

%gK,m(ré) — _nV(K[n—1],C_y).

r=0+
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The Mellin Transform

Let ¢ : [0,00) — [0,00) be an integrable function that is right
continuous and differentiable at 0. Then, the map given by

S tP (1) —(0))dt, pe(—1,0),

My {fooo tP=1y(t)at, p > 0 such that P~ 1y(t) € L'(RT),

is piece-wise continuous. This map is known as the Mellin transform.

Definition (Gardner and Zhang’s Radial Mean Bodies)
For 8 € S"~1 and a convex body K, the radial pth mean body of K is
the compact, symmetric, star shaped set whose radial function is
given by

PRk (0) := (PM 9r) (P)) 15-

Volp(K)

Note: gk is (1/n)-concave. Thus, it is log-concave. Keith Ball tells us
that this means RpK is a convex body when p > 0 (0 follows by
continuity).
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@ Jensen’s inequality tells us, for -1 < p<g< oo
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@ However, by adjusting for asymptotics, we obtain
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@ Berwald’s inequality lets us reverse the above inclusions for
—1<p<g<oor

1 1
DK C ("J; q) "RyK C (”tp> ® RoK C nVoln(K)IT°K,

with equality if, and only if, K is a n-dimensional simplex.
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Two Cool Technical Lemmas

Mellin-Berwald inequality by Fradelizi, Madiman and Li
For every non-increasing, s-concave, s > 0, function ¢, the function

= (ﬂi(@)))w: (p("; ;>M¢(p)>””

is decreasing on (—1,0) (here, ¥s(t) = (1 — t)1/9). Additionally, if
there is equality for any two p,q € (—1,0), then Gy (p) is constant.
Furthermore, Gy (p) is constant if, and only if, ¢ is affine on its
support.

(note: version for s < 0 also exists)
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= (ﬂi(@)))w: (p(”; L>M¢(p)>1/”

is decreasing on (—1,0) (here, ¥s(t) = (1 — t)1/9). Additionally, if
there is equality for any two p,q € (—1,0), then Gy (p) is constant.
Furthermore, Gy (p) is constant if, and only if, ¢ is affine on its
support.

(note: version for s < 0 also exists)

Fractional Derivative (see e.g. Haddad and Ludwig)
If ¢ :[0,00) — [0,00) is @ measurable function with lim;_,q+ ¢(t) =
¢(0) and such that [~ t0¢(t)dt < co for some sp € (0,1), then

lim (1 — ) /O°° t=Sp(t)dt = ¢(0).

s—1~



Higher-Order Zhang’s inequality

Theorem
Let K be a convex body inIR™ and m € IN. Then, for —1 < p < g < oo,
one has
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Equality occurs in any set inclusion if, and only if, K is a
n-dimensional simplex.

@ It turns out that Vol,m(RimK) = Vola(K)™.
@ This fact and the above theorem yields a new proof of the
higher-order Rogers-Shephard inequality.

Zhang’s inequality for higher-order projection bodies
Fix m € IN and K be a convex body in IR”. Then, one has

Voln(K)nm—mvolnm (HO’mK) > n% (nmn+ n) ’

with equality if, and only if, K is a n-dimensional simplex.



The Inequalities of Petty
There are two more well-known inequalities associated with I1°K.

@ Petty’s projection inequality:

n
Vol (BS

Voln(K)™ Vol (IT°K) < L’f‘: ,
Voln(B)~1)

with equality if, and only if, K is an ellipsoid. (Note: one possible
method of proof is with Steiner symmetrization)



The Inequalities of Petty

There are two more well-known inequalities associated with I1°K.
@ Petty’s projection inequality:

n
Vol (B}

Vol (K)™ Vol (IT°K) < LB% ,
Voln(B)~1)

with equality if, and only if, K is an ellipsoid. (Note: one possible
method of proof is with Steiner symmetrization)

@ Petty’s isoperimetric inequality:

n
Vol (B5)

Vol,,(TI°K)Vol,,_1(9K)" > Volp(Bf) | — 227 | |
n( ) n 1( ) = n( 2) (Voln(Bg1)

with equality if, and only if, K is a dilate of Bj. (Note: follows from
Jensen’s inequality and Aleksandrov’s formula for mixed volume)



The Inequalities of Petty

There are two more well-known inequalities associated with I1°K.
@ Petty’s projection inequality:

n
Vol (B3

Volp(K)™ "Wol,(IT°K) < LB?: ,
Voln(B)~1)

with equality if, and only if, K is an ellipsoid. (Note: one possible
method of proof is with Steiner symmetrization)

@ Petty’s isoperimetric inequality:

n
Vol (B5)

Vol,,(TI°K)Vol,,_1(9K)" > Volp(Bf) | — 227 | |
n( ) n 1( ) = n( 2)<Voln(Bg1)

with equality if, and only if, K is a dilate of Bj. (Note: follows from
Jensen’s inequality and Aleksandrov’s formula for mixed volume)

@ Combining the two yields the classical isoperimetric inequality



Higher-order Petty’s inequalities

Theorem (Petty’s projection inequality for higher-order
projection bodies)

Let m € N be fixed. Then, for every convex body K inIR", one has
Vol (K)ol ym (IT°"K') < Vol,(Bg)™ Vol ym (11" Bg),

with equality if, and only if, K is an ellipsoid.



Higher-order Petty’s inequalities
Theorem (Petty’s projection inequality for higher-order
projection bodies)
Let m € N be fixed. Then, for every convex body K inIR", one has

Voln(K)™~™Volpm (11> K) < Vols(Bg)™"Volpm (11> B3),

with equality if, and only if, K is an ellipsoid.
The proof uses a multi-dimensional Steiner symmetrization developed
in two papers by (Bianchi, Gardner and Gronchi) and Ulivelli.



Higher-order Petty’s inequalities

Theorem (Petty’s projection inequality for higher-order
projection bodies)
Let m € N be fixed. Then, for every convex body K inIR", one has

Vol (K)ol ym (IT°"K') < Vol,(Bg)™ Vol ym (11" Bg),
with equality if, and only if, K is an ellipsoid.

Theorem (Petty’s isoperimetric inequality for higher-order
projection bodies)

Let K be a convex body in R™ and m € IN. Then, one has the
following inequality:

Vol pm (TI>MK) Vol ,_1 (9K)™ > Vol pm (T1>™BY) Vol ,_1 (8"~ )™,

with equality if, and only if, K is an Euclidean ball.



Higher-order Petty’s inequalities
Theorem (Petty’s projection inequality for higher-order

projection bodies)
Let m € IN be fixed. Then, for every convex body K inIR", one has

Vol (K)™=™Vol ym (1T K) < Vol,(Bg)™ Vol ym (11" Bg),
with equality if, and only if, K is an ellipsoid.

Theorem (Petty’s isoperimetric inequality for higher-order
projection bodies)

Let K be a convex body in R" and m € IN. Then, one has the
following inequality:

Vol pm (TI>MK) Vol ,_1 (9K)™™ > Vol pm (T1>™BY) Vol ,_1 (8"~ )™,

with equality if, and only if, K is an Euclidean ball.

The proof uses Jensen’s inequality applied at the level of the
orthogonal group.



Higher-order Petty’s inequalities

Theorem (Petty’s projection inequality for higher-order
projection bodies)
Let m € N be fixed. Then, for every convex body K inIR", one has

Vol (K)ol ym (IT°"K') < Vol,(Bg)™ Vol ym (11" Bg),
with equality if, and only if, K is an ellipsoid.

Theorem (Petty’s isoperimetric inequality for higher-order
projection bodies)

Let K be a convex body in R™ and m € IN. Then, one has the
following inequality:

Vol pm (TI>MK) Vol ,_1 (9K)™ > Vol pm (T1>™BY) Vol ,_1 (8"~ )™,

with equality if, and only if, K is an Euclidean ball.

Combining both inequalities yields the isoperimetric inequality for
every choice of m.



The Centroid Body

@ Lutwak introduced the dual Mixed volume for star bodies K and
L:

VitKin=1L,.Li) = 7 [ ex(@)™Tou(6)'do.

When i = —1 we write V(K[n+ 1],L).



The Centroid Body

@ Lutwak introduced the dual Mixed volume for star bodies K and
L:

VitKin=1L,.Li) = 7 [ ex(@)™Tou(6)'do.

When i = —1 we write V(K[n+ 1],L).
@ Given a star body L in IR, its centroid body I'L is the unique

centrally symmetric convex body that satisfies the following
duality: for every convex body K in R", one has

V_i(L[n+1],IT°K) = %voln(L) V(K[n—1],TL).



The Centroid Body
@ Lutwak introduced the dual Mixed volume for star bodies K and
L:

= R 1 i j

VilKIn—il.Lli) = [ pk(6)" o (6)'cb.
When i = —1 we write V(K[n+ 1],L).

@ Given a star body L in IR, its centroid body I'L is the unique
centrally symmetric convex body that satisfies the following
duality: for every convex body K in R", one has

V_i(L[n+1],IT°K) = %voln(L) V(K[n—1],TL).

@ By setting K =T'L and using the so-called Dual Minkowski’s
inequality + Petty’s projection inequality, one obtains the
Busemann-Petty centroid inequality, which says

Vol (TL) Vol (L)

is minimized when L is a centered ellipsoid.



The Higher-Order Centroid Body

@ Given a star body L in R™, its higher-order centroid body I'"L is
the unique convex body in IR" that satisfies the following duality:
for every convex body K in IR”, one has

nm+ 1

V_1(L[nm + 1],T1"K) = Volpm(L) V(K[n—1],TML).



The Higher-Order Centroid Body

@ Given a star body L in R™, its higher-order centroid body I'"L is
the unique convex body in IR" that satisfies the following duality:
for every convex body K in IR”, one has

V.o (L{nm + 1], TI™K) = Volm(L) 2]

V(K[n—1],IML).

@ By setting K =T'""L and using the so-called Dual Minkowski’'s
inequality + the higher-order Petty’s projection inequality, one
obtains the Busemann-Petty centroid inequality, which says

Vol (T™L)Volpm(L) ™ m

is minimized when L = TT°>™E for an ellipsoid E.



The Random Simplex inequality

@ We denote the expected volume of Cy = convy<;<m0, Xj], a
random simplex of K, by

Exn(Voly(Cx)) :=Volpy(K)™" | -+ | Vol (convy<i<plo,x;]) dxy ... dxn.
X A <i<



The Random Simplex inequality

@ We denote the expected volume of Cy = convi<j<p[0, Xi], a
random simplex of K, by

Exn(Voly(Cx)) :=Volp(K)™" | -+ | Vol (convy<j<plo,x;]) dxy ...dxn.
X A <i<

By an observation of Petty, the right-hand side equals
2-"Vol,(TK).

@ Thus, the Busemann-Petty centroid inequality is equivalent to the
Busemann random simplex inequality:

Vol,_4 (5571) !
(n+1)Volp(BY) | °

[Ekn (VOln(C)‘())VOIn(K)_1 > (

with equality if, and only if, K is a centered ellipsoid.



The Higher order Random Simplex inequality
@ Fix a convex body K in R” and a star body L in R". Let
X = (Xi,...,Xm) € R™ be a random vector uniformly distributed
inside L, (no independence of the X is required).



The Higher order Random Simplex inequality

@ We denote the expected mixed volume of K and Cy by

E,(V(K[n—1],Cy) = Vol;m(L)/LV(K[n 1], Cx)dx.



The Higher order Random Simplex inequality
@ We denote the expected mixed volume of K and Cx by
1 _
Ei(V(K[n—1],Cy) i= W/L V(K[n—1],Cx)dx.
It turns out that

V(K[n—1,T(-L)) =E (V(K[n—1],Cx)).



The Higher order Random Simplex inequality

@ We denote the expected mixed volume of K and Cy by

E.(V(K[n—1],Cy) i= W/LV(K[n— 1], Cx)dx.

Consider w,(I'"L) =E;(wp(Cx))



The Higher order Random Simplex inequality
@ We denote the expected mixed volume of K and Cx by
1 -
E, (V(K[n—1],Cy) := W/L V(K[n — 1], Cx)dXx.
Consider w,(I'""L) = E (wn(Cx)) Points can be chosen
independently:

L={(x,%,xs) € (R?): |x4| <10}



The Higher order Random Simplex inequality
@ We denote the expected mixed volume of K and Cx by

1
=—— [ V(K[n—1],Cx)dx.
Vol J, V(Kin =11, Cr)ax
Points can be chosen independently:

L= {(X1!X21X3) & <R2)3 : |X1| < 10}

E (V(K[n—1],Cx):




The Higher order Random Simplex inequality
@ We denote the expected mixed volume of K and Cx by

1
=——— [ V(K[n—1],Cx)dx.
Vol J, V(Kin =11, Cr)ax
Points can be chosen independently:

L= {(X1!X21X3) & <R2)3 : ’X‘|| < 10}

E (V(K[n—1],Cx):



The Higher order Random Simplex inequality
@ We denote the expected mixed volume of K and Cx by

1
=—— [ V(K[n—1],Cx)dx.
Vol J, V(Kin =11, Cr)ax
Points can be chosen independently:

L= {(X1!X21X3) & (RZ)S : |X1| < 10}

E (V(K[n—1],Cx):




The Higher order Random Simplex inequality
@ We denote the expected mixed volume of K and Cx by

1
=—— [ V(K[n—1],Cx)dx.
Vol J, V(Kin =11, Cr)ax
Points can be chosen independently:

L= {(X1!X21X3) & <R2)3 : |X1| < 10}

E (V(K[n—1],Cx):




The Higher order Random Simplex inequality

@ We denote the expected mixed volume of K and Cx by

1
— | V(K[n—1],Cx)dx.
Vol J, V(Kin =11, Cr)ax
Points can be chosen independently:

L= {(X1,X2,X3> & (IRZ)S : |X1| < 10}

]EL(V(K[I’I— 1], C)‘() =




The Higher order Random Simplex inequality
@ We denote the expected mixed volume of K and Cx by
1 -
E, (V(K[n—1],Cy) := W/L V(K[n — 1], Cx)dXx.
Or dependently:

L= {(X1,X2,X3) S (R2)3 : |X1| <10 and max (x,-,e1> = mjn (x,-,e1> < 1}
i i



The Higher order Random Simplex inequality
@ We denote the expected mixed volume of K and Cx by

! /L V(K[n— 1], Cx)dx.

2 (V=G =

Or dependently:
L= {(X1,X2,X3) S (R2)3 : |X1| <10 and max (x,-,e1) = mjn (x,-,e1) < 1}
i i




The Higher order Random Simplex inequality
@ We denote the expected mixed volume of K and Cx by
1 _
E, (V(K[n—1],Cy) := W/L V(K[n — 1], Cx)dXx.
Or dependently:

L= {(X1,X2,X3) S (R2)3 : |X1| <10 and max (x,-,e1> = mjn (x,-,e1> < 1}
i i



The Higher order Random Simplex inequality
@ We denote the expected mixed volume of K and Cx by

! /L V(K[n— 1], Cx)dx.

2 (V=G =

Or dependently:
L= {(X1,X2,X3) S (R2)3 : |X1| <10 and max (x,-,e1) = mjn (x,-,e1) < 1}
i i



The Higher order Random Simplex inequality
@ We denote the expected mixed volume of K and Cx by
1 _
E, (V(K[n—1],Cy) := W/L V(K[n — 1], Cx)dXx.
Or dependently:

L= {(X1,X2,X3) S (R2)3 : |X1| <10 and max (x,-,e1) = mjn (x,-,e1) < 1}
i i



The Higher order Random Simplex inequality
@ We denote the expected mixed volume of K and Cx by
1 _
E, (V(K[n—1],Cy) := W/L V(K[n — 1], Cx)dXx.
Or dependently:

L= {(X1,X2,X3) S (R2)3 : |X1| <10 and max (x,-,e1> = mjn (x,-,e1> < 1}
i i



The Higher order Random Simplex inequality

@ We denote the expected mixed volume of K and Cy by

E,(V(K[n—1],Cy) = Vol,jm(L) [ ViKin—11,c)dx.

Theorem

Let K™ be the class of convex bodies in R" and S"™ the class of star
bodies in R™. Then, the functional

(K,L) € K" x 8™ s Volpm(L) = Voln(K) = "7 E(V(K[n — 1], Cx))

is uniquely minimized when K is an ellipsoid and L = ATT>"K for
some A > 0.



The Higher order Random Simplex inequality

@ We denote the expected mixed volume of K and Cy by

E,(V(K[n—1],Cy) = Vol,jm(L) [ ViKin—11,c)dx.

Theorem

Let K™ be the class of convex bodies in R" and S"™ the class of star
bodies in R™. Then, the functional

(K,L) € K" x 8™ s Volpm(L) = Voln(K) = "7 E(V(K[n — 1], Cx))

is uniquely minimized when K is an ellipsoid and L = ATT>"K for
some A > 0.



The Higher order Random Simplex inequality

@ We denote the expected mixed volume of K and Cx by

! /L V(K[n— 1], Cx)dx.

E((V(KIn—1],Cx) := 55—y

Theorem
Let K™ be the class of convex bodies in R" and S™"™ the class of star
bodies in R"™. Then, the functional

(K,L) € K" x 8™ i Vol pm(L) = #m Voln(K) = "7 E(V(K[n — 1], Cx))

is uniquely minimized when K is an ellipsoid and L = ATTI>"K for
some A > 0.

It turns out that
pHo,mBg ()_()_1 = nVO].n(Bg) Wn(C)‘().



The Higher order Random Simplex inequality

@ We denote the expected mixed volume of K and Cy by

E,(V(K[n—1],Cy) = Voln1m(L) [ ViKin—11,c)dx.

Theorem
Let K™ be the class of convex bodies in R" and S"™ the class of star
bodies in R™. Then, the functional

(K,L) € K" x 8™ s Volpm(L) = Voln(K) = "7 E(V(K[n — 1], Cx))

is uniquely minimized when K is an ellipsoid and L = ATT>"K for
some A > 0.

In fact, a special case of the above theorem is that the functional

VOlnm(L) "m]EL(Wn(C )) Volnm nm+1 /Wn CX

is minimized for L = AIT>™B] over S™™.



BONUS: affine Sobolev’s Inequality
Recall that a function f is said to be in W'-1(IR") if there exists a
vector field Vf satisfying

/Rnf(x)divzp(x)dx - —/]Rn<Vf,1p(x)>dx

for every smooth vector field .



BONUS: affine Sobolev’s Inequality
Recall that a function f is said to be in W'-1(IR") if there exists a
vector field Vf satisfying

/Rnf(x)divzp(x)dx - —/]Rn<Vf,1/J(x)>dx

for every smooth vector field .

Theorem
Fix m,n € IN. Consider a compactly supported, non-identically zero
function f € W1 (IR™). Then, by setting

1 n
dn,m := (nmVolym(I1°™Bg)) ™™ Voln(Bg)T1, one has

_ 1
—nm nm
j 7 > n_.
</S"m—1 ( leg%)ﬁn(Vf(z),GQ_dz) d6> An.m = Hf”ﬁ

This inequality can be extended fo functions of bounded variation.
There is equality if, and only if, there exists A > 0, and an ellipsoid
E € K" such that f(x) = Axe(x).



BONUS: affine Sobolev’s Inequality
Recall that a function f is said to be in W'-1(IR") if there exists a
vector field Vf satisfying

/ﬂ;nf(x)diw(x)dx: f/]Rn<Vf,1p(x)>dx

for every smooth vector field .

Theorem
Fix m,n € IN. Consider a compactly supported, non-identically zero
function f € W11 (IR"). Then, by setting

1

O := (NMVolpm (TTMBE)) 7 Vol,(BF) "", one has

1
—nm ~ nm
( /S " ( [ max <Vf(z),9,->dz) d9> Ao > ] ..

This inequality can be extended to functions of bounded variation.
There is equality if, and only if, there exists A > 0, and an ellipsoid
E € K" such that f(x) = Axe(x).

@ The case m =1 is known as Zhang’s affine Sobolev inequality



BONUS: affine Sobolev’s Inequality
Recall that a function f is said to be in W'-1(IR") if there exists a
vector field Vf satisfying

/]R F(x)divp(x)dx = — /ﬂ;n<Vf,1p(x)>dx
for every smooth vector field .

Theorem
Fix m,n € IN. Consider a compactly supported, non-identically zero
function f € W1 (IR™). Then, by setting

1

dn,m := (nMVolpm (11> BY)) ™™ Vol,,(Bg)"%, one has

1
—nm ~ nm

j 7 > n_.

</Snm1 ( R" 12,%);7<Vf(z)’6’>_dz) d6> dn,m = ||f||ﬁ

This inequality can be extended to functions of bounded variation.
There is equality if, and only if, there exists A > 0, and an ellipsoid
E € K" such that f(x) = Axg(x).

@ Extends our higher-order Petty projection inequality to sets of
finite perimeter



BONUS: affine Sobolev’s Inequality
Recall that a function f is said to be in W'-1(IR") if there exists a
vector field Vf satisfying

/Rn F(x)divip(x) dx = —/]Rn<Vf,1p(x)>dx

for every smooth vector field .

Theorem
Fix m,n € IN. Consider a compactly supported, non-identically zero
function f € W1 (IR"). Then, by setting

1 n—
nm = (NMNOLym (TTMBE)) 7 Vol ,(Bg) =", one has

|
—nm ~ nm

j 0 > n .

( Loy ([ max (91(2).00-z) d@) o > ] 2.

This inequality can be extended to functions of bounded variation.
There is equality if, and only if, there exists A > 0, and an ellipsoid
E € K" such that f(x) = Axg(X).

@ Implies the classical Sobolev inequality for every choice of m.



