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Main Definitions: Mixed Volume

K and L convex bodies in Rn and t ≥ 0
Then Voln(K + tL) is a homogeneous polynomial (in t) of degree n
and

Voln(K + tL) =
n

∑
i=0

t i
(

n
i

)
V (K [n − i ],L[i ]).

The coefficients V (K [n − i ],L[i ]) are called the mixed volumes of K
(n − i) times and L [i ] times. When i = 1, we write V (K [n − 1],L)

V (K [n − i ],K [i ]) = Voln(K ).
Mixed volume is translation invariant:
V (K [n − 1],L + a) = V (K [n − 1],L), for a ∈ Rn.
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Let Bn

2 be the unit Euclidean ball in Rn. Then: the mean width of
K is given by

wn(K ) =
1

Voln(Bn
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V (Bn
2 [n − 1],K ).



How symmetric is a convex body?
K is said to be centrally symmetric if K = −K , and to be
symmetric if a translate is centrally symmetric.
A possible candidate for a “symmetric” version of K is

DK := K + (−K ).

K is centrally symmetric if DK = 2K .

BM implies →
2n ≤ Voln(DK )

Voln(K )
,

with equality if, and only if, K is symmetric.
The Rogers-Shephard inequality shows the reverse direction:

Voln(DK )

Voln(K )
≤
(

2n
n

)
,

with equality if, and only if, K is a n-dimensional simplex.
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Enter Rolf Schneider
The covariogram of K is

gK (x) = Voln(K ∩ (K + x)).

Amazing fact: the support of gK is DK
(= {x ∈ Rn : K ∩ (K + x) ̸= ∅}).
Rolf Schneider: Define the mth order covariogram of K as

gK ,m(x̄) = Voln

(
K ∩

m⋂
i=1

(K + xi )

)
,

where x̄ = (x1, . . . ,xm) ∈ (Rn)m ∼= Rnm.
The difference body of order m of K , Dm(K ), is a convex body in
Rnm defined as the support of gK ,m.

Voln(K )−mVolnm (Dm(K )) ≤
(

nm + n
n

)
,

with equality if, and only if, K is a n-dimensional simplex.
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Operator Hopping

Goal: Extend the concept of higher-order to other "symmetric"
version of convex bodies

Given a compact, star shaped set L its
radial function is ρL(y) = sup{λ > 0 : λy ∈ L}.
Fix θ ∈ Sn−1, the unit sphere. Then, Matheron tells us

d
dr

gK (rθ)
∣∣
r=0+ =

d
dr

Voln(K ∩ (K + rθ))
∣∣
r=0+ = −Voln−1(Pθ⊥K ),

where Pθ⊥K is the orthogonal projection of K onto the
hyperplane through the origin orthogonal to θ.
Minkowski tells us that Voln−1(Pθ⊥K ) = nV (K [n − 1], [o,θ])

Aleksandrov tell us that V (K [n − 1], [o,θ]) is convex function in θ.
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The Polar Projection Body

The polar projection body of K , Π◦K , is the centrally symmetric
convex body whose radial function is given by

ρ−1
Π◦K (θ) = nV (K [n − 1], [o,θ]).

Why centrally symmetric? Translation invariance!

ρ−1
Π◦K (θ) = nV (K [n−1], [o,θ]) = nV (K [n−1], [o,−θ]) = ρ−1

Π◦K (−θ)

Also, the fact that

ρ−1
Π◦(−K )

(θ) = nV (−K [n−1], [o,θ]) = nV (K [n−1], [o,−θ]) = ρ−1
Π◦K (−θ)

shows
Π◦(−K ) = Π◦K .



The Higher-order Polar Projection Body
Theorem (We Start Here)
Let K be a convex body in Rn and m ∈ N. For every direction
θ̄ = (θ1, . . . ,θm) ∈ Snm−1, let C−θ̄ = conv0≤i≤m[o,−θi ]. Then:

d
dr

gK ,m(r θ̄)

∣∣∣∣
r=0+

= −nV (K [n − 1],C−θ̄).

We define the mth order polar projection body of K as the convex
body in Rnm whose radial function is given by

ρ−1
Π◦,mK (θ̄) = nV (K [n − 1],C−θ̄)

Π◦,mK contains the origin as an interior point

For m ≥ 2, Π◦,mK is centrally symmetric if, and only if, K is
symmetric (−Π◦,mK = Π◦,m(−K ))
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The Mellin Transform
Let ψ : [0,∞)→ [0,∞) be an integrable function that is right
continuous and differentiable at 0. Then, the map given by

Mψ : p 7→
{∫ ∞

0 tp−1(ψ(t)− ψ(0))dt , p ∈ (−1,0),∫ ∞
0 tp−1ψ(t)dt , p > 0 such that tp−1ψ(t) ∈ L1(R+),

is piece-wise continuous. This map is known as the Mellin transform.

Definition (Gardner and Zhang’s Radial Mean Bodies)
For θ ∈ Sn−1 and a convex body K , the radial pth mean body of K is
the compact, symmetric, star shaped set whose radial function is
given by

ρRpK (θ) :=
(

pM gK (rθ)

Voln(K )

(p)
) 1

p
.

Note: gK is (1/n)-concave. Thus, it is log-concave. Keith Ball tells us
that this means RpK is a convex body when p ≥ 0 (0 follows by
continuity).
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Gardner and Zhang’s Radial Mean Bodies

Jensen’s inequality tells us, for −1 < p ≤ q ≤ ∞

{o} = R−1K ⊂ RpK ⊂ RqK ⊂ DK .

However, by adjusting for asymptotics, we obtain

Voln(K )Π◦K = lim
p→−1

(1+p)
1
p RpK ⊂ (1+p)

1
p RpK ⊂ (1+q)

1
q RqK ⊂DK

Berwald’s inequality lets us reverse the above inclusions for
−1 < p ≤ q ≤ ∞:

DK ⊆
(

n + q
n

) 1
q
RqK ⊆

(
n + p

n

) 1
p
RpK ⊆ nVoln(K )Π◦K ,

with equality if, and only if, K is a n-dimensional simplex.
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Zhang’s inequality
It turns out that Voln(RnK ) = Voln(K ). Thus, the previous result
implies

Voln(DK ) ≤
(

2n
n

)
Voln(K ) ≤ nnVoln(K )nVoln(Π◦K ).

The first inequality is the Rogers-Shephard inequality again. The
second inequality is known as Zhang’s inequality, usually
written as

1
nn

(
2n
n

)
≤ Voln(K )n−1Voln(Π◦K ),

with equality if, and only if, K is a n-dimensional simplex.

Definition
For m ∈ N and p > −1, we define the (m,p) radial mean bodies
Rm

p K , to be the star bodies (convex if p ≥ 0) in Rnm whose radial
functions are given by, for θ̄ ∈ Snm−1:

ρRm
p K (θ̄) =

(
pM gK ,m(r θ̄)

Voln(K )

(p)

) 1
p

(1)

for p ̸= 0. The case p = 0 follows from continuity of the pth average.
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Two Cool Technical Lemmas
Mellin-Berwald inequality by Fradelizi, Madiman and Li
For every non-increasing, s-concave, s > 0, function ψ, the function

Gψ(p) :=
(Mψ(p)
Mψs (p)

)1/p

=

(
p
(

p + 1
s

p

)
Mψ(p)

)1/p

is decreasing on (−1,∞) (here, ψs(t) = (1 − t)1/s). Additionally, if
there is equality for any two p,q ∈ (−1,∞), then Gψ(p) is constant.
Furthermore, Gψ(p) is constant if, and only if, ψs is affine on its
support.
(note: version for s ≤ 0 also exists)

Fractional Derivative (see e.g. Haddad and Ludwig)
If φ : [0,∞)→ [0,∞) is a measurable function with limt→0+ φ(t) =
φ(0) and such that

∫ ∞
0 t−s0 φ(t)dt < ∞ for some s0 ∈ (0,1), then

lim
s→1−

(1 − s)
∫ ∞

0
t−s φ(t)dt = φ(0).
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Higher-Order Zhang’s inequality
Theorem
Let K be a convex body in Rn and m ∈ N. Then, for −1 < p ≤ q < ∞,
one has

Dm(K ) ⊆
(

q + n
n

) 1
q
Rm

q K ⊆
(

p + n
n

) 1
p
Rm

p K ⊆ nVoln(K )Π◦,mK .

Equality occurs in any set inclusion if, and only if, K is a
n-dimensional simplex.

It turns out that Volnm(Rm
nmK ) = Voln(K )m.

This fact and the above theorem yields a new proof of the
higher-order Rogers-Shephard inequality.

Zhang’s inequality for higher-order projection bodies
Fix m ∈ N and K be a convex body in Rn. Then, one has

Voln(K )nm−mVolnm (Π◦,mK ) ≥ 1
nnm

(
nm + n

n

)
,

with equality if, and only if, K is a n-dimensional simplex.
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The Inequalities of Petty

There are two more well-known inequalities associated with Π◦K .
Petty’s projection inequality:

Voln(K )n−1Voln(Π◦K ) ≤
(

Voln(Bn
2)

Voln(Bn−1
2 )

)n

,

with equality if, and only if, K is an ellipsoid. (Note: one possible
method of proof is with Steiner symmetrization)

Petty’s isoperimetric inequality:

Voln(Π◦K )Voln−1(∂K )n ≥ Voln(Bn
2)

(
Voln(Bn

2)

Voln(Bn−1
2 )

)n

,

with equality if, and only if, K is a dilate of Bn
2 . (Note: follows from

Jensen’s inequality and Aleksandrov’s formula for mixed volume)
Combining the two yields the classical isoperimetric inequality
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Higher-order Petty’s inequalities
Theorem (Petty’s projection inequality for higher-order
projection bodies)
Let m ∈ N be fixed. Then, for every convex body K in Rn, one has

Voln(K )nm−mVolnm(Π◦,mK ) ≤ Voln(Bn
2)

nm−mVolnm(Π◦,mBn
2),

with equality if, and only if, K is an ellipsoid.

Theorem (Petty’s isoperimetric inequality for higher-order
projection bodies)
Let K be a convex body in Rn and m ∈ N. Then, one has the
following inequality:

Volnm(Π◦,mK )Voln−1(∂K )nm ≥ Volnm(Π◦,mBn
2)Voln−1(S

n−1)nm,

with equality if, and only if, K is an Euclidean ball.
Combining both inequalities yields the isoperimetric inequality for
every choice of m.
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The Centroid Body
Lutwak introduced the dual Mixed volume for star bodies K and
L:

Ṽi (K [n − i ],L[i ]) =
1
n

∫
Sn−1

ρK (θ)
n−i ρL(θ)

idθ.

When i = −1 we write Ṽ (K [n + 1],L).

Given a star body L in Rn, its centroid body ΓL is the unique
centrally symmetric convex body that satisfies the following
duality: for every convex body K in Rn, one has

Ṽ−1(L[n + 1],Π◦K ) =
n + 1

2
Voln(L)V (K [n − 1],ΓL).

By setting K = ΓL and using the so-called Dual Minkowski’s
inequality + Petty’s projection inequality, one obtains the
Busemann-Petty centroid inequality, which says

Voln(ΓL)Voln(L)−1

is minimized when L is a centered ellipsoid.



The Centroid Body
Lutwak introduced the dual Mixed volume for star bodies K and
L:
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The Higher-Order Centroid Body
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The Random Simplex inequality

We denote the expected volume of CX̄ = conv1≤i≤m[o,Xi ], a
random simplex of K , by

EK n (Voln(CX̄ )) :=Voln(K )−n
∫

K
· · ·
∫

K
Voln (conv1≤i≤n[o,xi ])dx1 . . .dxn.

Thus, the Busemann-Petty centroid inequality is equivalent to the
Busemann random simplex inequality:

EK n (Voln(CX̄ ))Voln(K )−1 ≥
(

Voln−1(Bn−1
2 )

(n + 1)Voln(Bn
2)

)n

,

with equality if, and only if, K is a centered ellipsoid.
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The Higher order Random Simplex inequality
Fix a convex body K in Rn and a star body L in Rnm. Let
X̄ = (X1, . . . ,Xm) ∈ Rnm be a random vector uniformly distributed
inside L, (no independence of the Xi is required).

We denote the
expected mixed volume of K and CX̄ by

EL(V (K [n − 1],CX̄ ) :=
1

Volnm(L)

∫
L

V (K [n − 1],Cx̄ )dx̄ .

Theorem
Let Kn be the class of convex bodies in Rn and Snm the class of star
bodies in Rnm. Then, the functional

(K ,L) ∈ Kn × Snm 7→ Volnm(L)−
1

nm Voln(K )−
n−1

n EL(V (K [n − 1],CX̄ ))

is uniquely minimized when K is an ellipsoid and L = λΠ◦,mK for
some λ > 0.
In fact, a special case of the above theorem is that the functional

Volnm(L)−
1

nm EL(wn(CX̄ )) = Volnm(L)−
nm+1

nm

∫
L

wn(Cx̄ )dx̄

is minimized for L = λΠ◦,mBn
2 over Snm.
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BONUS: affine Sobolev’s Inequality
Recall that a function f is said to be in W 1,1(Rn) if there exists a
vector field ∇f satisfying∫

Rn
f (x)divψ(x)dx = −

∫
Rn

⟨∇f ,ψ(x)⟩dx

for every smooth vector field ψ.

Theorem
Fix m,n ∈ N. Consider a compactly supported, non-identically zero
function f ∈ W 1,1(Rn). Then, by setting

dn,m :=
(
nmVolnm(Π◦,mBn

2)
) 1

nm Voln(Bn
2)

n−1
n , one has

(∫
Snm−1

(∫
Rn

max
1≤i≤m

⟨∇f (z),θi ⟩−dz
)−nm

d θ̄

)− 1
nm

dn,m ≥ ∥f∥ n
n−1

.

This inequality can be extended to functions of bounded variation.
There is equality if, and only if, there exists A > 0, and an ellipsoid
E ∈ Kn such that f (x) = AχE (x).
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The case m = 1 is known as Zhang’s affine Sobolev inequality



BONUS: affine Sobolev’s Inequality
Recall that a function f is said to be in W 1,1(Rn) if there exists a
vector field ∇f satisfying∫

Rn
f (x)divψ(x)dx = −

∫
Rn

⟨∇f ,ψ(x)⟩dx

for every smooth vector field ψ.

Theorem
Fix m,n ∈ N. Consider a compactly supported, non-identically zero
function f ∈ W 1,1(Rn). Then, by setting

dn,m :=
(
nmVolnm(Π◦,mBn

2)
) 1

nm Voln(Bn
2)

n−1
n , one has

(∫
Snm−1

(∫
Rn

max
1≤i≤m

⟨∇f (z),θi ⟩−dz
)−nm

d θ̄

)− 1
nm

dn,m ≥ ∥f∥ n
n−1

.

This inequality can be extended to functions of bounded variation.
There is equality if, and only if, there exists A > 0, and an ellipsoid
E ∈ Kn such that f (x) = AχE (x).

Extends our higher-order Petty projection inequality to sets of
finite perimeter
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