
Comparison problems for the Radon transform.

Alexander Koldobsky

University of Missouri-Columbia

Joint work with Michael Roysdon and Artem Zvavitch



Settings.

Given two non-negative functions f ,g such that the Radon transform of f is
pointwise smaller than the Radon transform of g , does it follow that the
Lp-norm of f is smaller than the Lp-norm of g for a given p > 0?

For a function ϕ on IRn, integrable over all affine hyperplanes, the (classical)
Radon transform of ϕ is the function Rϕ on IR×Sn−1 defined by

Rϕ(t,θ) =
∫
〈x ,θ〉=t

ϕ(x)dx , (t,θ) ∈ IR×Sn−1,

where integration is over the Lebesgue measure in the hyperplane perpendicular
to θ at distance t from the origin.

The spherical Radon transform of a continuous function f on the sphere Sn−1

is a continuous function Rf on the sphere defined by

Rf (θ) =
∫

Sn−1∩θ⊥
f (ξ)dξ, θ ∈ Sn−1.

Here θ⊥ denotes the central hyperplane orthogonal to the direction θ.
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Problems.

Problem 1. Consider two even, continuous, positive functions f ,g on
Sn−1, n ≥ 3, and let p > 0. If

Rf (θ)≤ Rg(θ) for all θ ∈ Sn−1, (1)

does it follow that ‖f ‖Lp(Sn−1) ≤ ‖g‖Lp(Sn−1)?

Problem 2. Let p > 0. Given a pair of even, continuous positive functions
ϕ,ψ ∈ L1(IRn)∩Lp(IRn), n ≥ 2, satisfying the condition

Rϕ(t,θ)≤Rψ(t,θ), for all (t,θ) ∈ IR×Sn−1, (2)

does it follow that ‖ϕ‖Lp(IRn) ≤ ‖ψ‖Lp(IRn)?

Yes, if p = 1. For p 6= 1, the answer is negative in general.

Let n ≥ 2, M > 1, p > n
n−1 . Then the functions ϕ(x) = χBn

2
(x) and

ψ(x) = M−n+1χMBn
2
(x) provide a counterexample to Problem 2.
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Motivation: The Busemann-Petty problem 1.

1956: Suppose K ,L⊂ IRn are two origin-symmetric convex bodies so that

|K ∩θ⊥| ≤ |L∩θ⊥|, ∀θ ∈ Sn−1.

Does it necessarily follow that |K | ≤ |L|? Here | · | denotes the volume of the
appropriate dimension.

The problem was solved at the end of 1990’s, and the answer is affirmative
when n ≤ 4 and negative when n ≥ 5.
Ball, Bourgain, Gardner, Giannopoulos, K., Larman, Lutwak, Papadimitrakis,
Rogers, Schlumprecht, Zhang.

Note that our Problem 1 is a generalization of the Busemann-Petty problem.
One can see it by choosing f = ‖ · ‖−n+1

K , g = ‖ · ‖−n+1
L and p = n

n−1 .

Indeed, by the polar formulas for volume

|K ∩ ξ⊥|= 1
n−1

∫
Sn−1∩ξ⊥

‖x‖−n+1
K dx = 1

n−1R(‖ · ‖−n+1
K )(ξ) = 1

n−1Rf (ξ),

and
|K |= 1

n

∫
Sn−1
‖x‖−n

K dx = 1
n‖f ‖

p
Lp(Sn−1).
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Motivation: The Busemann-Petty problem 2.
One of the ingredients of the solution of the BP problem is Lutwak’s
connection with intersection bodies. Lutwak showed that if the body K is an
intersection body, then the answer to the Busemann-Petty problem is
affirmative for any star body L. On the other hand, every origin-symmetric
convex non-intersection body can be perturbed to construct a counterexample.
Therefore, the answer to the Busemann-Petty problem in IRn is affirmative if,
and only if every origin-symmetric convex body in IRn is an intersection body.

Another ingredient in the Fourier analytic solution of the Busemann-Petty
problem is the characterization of intersection bodies in terms of the Fourier
transform. It was proved in K.(1998) that an origin-symmetric star body
K ⊂ IRn is an intersection body if, and only if, ‖ · ‖−1

K represents a positive
definite distribution on IRn. Recall that a distribution f is called positive
definite if 〈f̂ ,φ〉 ≥ 0 for any non-negative test function φ ∈ S(IRn).
The class of intersection bodies includes ellipsoids, unit balls of finite
dimensional subspaces of Lp , 0< p ≤ 2, among others.
Our approach to the comparison problems is based on these two ideas. We
introduce special classes of functions that play the role of intersection bodies.
For the spherical comparison problem, this is the class of functions f on Sn−1

for which the extension of f p−1 to an even homogeneous of degree −1 function
on IRn represents a positive definite distribution. The results resemble Lutwak’s
connections in the Busemann-Petty problem.
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Intersection bodies.
A closed bounded set K in IRn is called a star body if every straight line
passing through the origin crosses the boundary of K at exactly two points
different from the origin, the origin is an interior point of K , and the
Minkowski functional of K defined by ‖x‖K = min{a ≥ 0 : x ∈ aK} is a
continuous function on IRn.

The radial function of a star body K is defined by rK (x) = ‖x‖−1
K , x ∈ IRn. If

x ∈ Sn−1 then rK (x) is the radius of K in the direction of x .
The class of intersection bodies was introduced by Lutwak. We say that a star
body K in IRn is the intersection body of another star body L if for every
ξ ∈ Sn−1,

rK (ξ) = ‖ξ‖−1
K = |L∩ ξ⊥|= 1

n−1R
(
‖ · ‖−n+1

L

)
(ξ).

If µ is a finite Borel measure on Sn−1, then Rµ is defined by

(Rµ, f ) = (µ,Rf ) =
∫

Sn−1
Rf (x)dµ(x), ∀f ∈ C(Sn−1).

A star body K in IRn is called an intersection body if ‖ · ‖−1
K = Rµ for some

measure µ, i.e.∫
Sn−1
‖x‖−1

K f (x)dx =
∫

Sn−1
Rf (x)dµ(x), ∀f ∈ C(Sn−1).
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The spherical case 1.

Theorem 1. Let f ,g be even continuous positive functions on the sphere
Sn−1, and suppose that

Rf (θ)≤ Rg(θ), for all θ ∈ Sn−1. (3)

Then:
(a) Suppose that for some p > 1 the function |x |−1

2 f p−1
(

x
|x |2

)
represents a

positive definite distribution on IRn. Then ‖f ‖Lp(Sn−1) ≤ ‖g‖Lp(Sn−1).

(b) Suppose that for some 0< p < 1 the function |x |−1
2 gp−1

(
x
|x |2

)
represents

a positive definite distribution on IRn. Then ‖f ‖Lp(Sn−1) ≤ ‖g‖Lp(Sn−1).
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The spherical case 2.

Theorem 2. The following hold true:
(a) Let g be an infinitely smooth strictly positive even function on Sn−1 and

p > 1. Suppose that the distribution |x |−1
2 gp−1

(
x
|x |2

)
is not positive

definite on IRn. Then there exists an infinitely smooth even function f on
Sn−1 so that the condition (3) holds, but ‖f ‖Lp(Sn−1) > ‖g‖Lp(Sn−1).

(b) Let f be an infinitely smooth strictly positive even function on Sn−1 and
0< p < 1. Suppose that the distribution |x |−1

2 f p−1
(

x
|x |2

)
is not positive

definite on IRn. Then there exists an infinitely smooth even function g on
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Intersection function of a function

Definition. Let g be a positive, continuous, integrable, and even in the first
variable function on IR×Sn−1. We say that a function f on IRn is an
intersection function of g if, for any Schwartz test function ϕ ∈ S(IRn),∫

IRn
f (x)ϕ(x) dx =

∫
Sn−1

∫
IR
Rϕ(t,θ)g(t,θ) dt dθ.

This means that f = R∗g is the dual Radon transform of a positive function g .

The existence of an intersection function is guaranteed by the well-known
formula for the dual Radon transform:

Proposition 1. The function f : IRn→ IR+ defined by

f (x) =
∫

Sn−1
g(〈x ,θ〉,θ)dθ

is an intersection function of g .
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The Fourier characterization.

Proposition 2. Let g be as above. A function f on IRn is an intersection
function of g if, and only if,

f = 1
π

(
|x |−n+1

2

(
g
(
t, x
|x |2

))∧
t

(|x |2)

)∧
x

,

where the interior Fourier transform is taken with respect to t ∈ IR, and the
exterior Fourier transform is with respect to x ∈ IRn.
Proof. Note that for fixed θ ∈ Sn−1 the function t ∈ IR →Rϕ̂(t,θ) is the
Fourier transform of the function z ∈ IR → (2π)n−1ϕ(zθ). Therefore, for any
test function ϕ, applying Parseval’s identity to the inner integral by dt, we get

〈f̂ ,ϕ〉=
∫

IRn
f (x)ϕ̂(x) dx =

∫
Sn−1

∫
IR
Rϕ̂(t,θ)g(t,θ) dt dθ

= (2π)n−1
∫

Sn−1

∫
IR
ϕ(zθ)(g(t,θ))∧t (z) dz dθ

= 2(2π)n−1
〈
|x |−n+1

2

(
g
(
t, x
|x |2

))∧
t

(|x |2),ϕ(x)
〉
.
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Intersection functions

Definition. A function f defined on IRn is called an intersection function if
there exists a non-negative, even, finite Borel measure µ on IR×Sn−1 such that∫

IRn
f ϕ=

∫
IR×Sn−1

Rϕ(t,θ)dµ(t,θ), ∀ϕ ∈ S(IRn).

Suppose that L is an intersection body corresponding to the measure ν on the
sphere. Recall the definition of the intersection body,∫

IRn
f ϕ=

∫
Sn−1

Rϕ(θ)dν(θ), ∀ϕ ∈ Sn−1.

This means that the radial function ρL(x) = ‖x‖−1
L of the body L is an

intersection function corresponding to the measure dµ(t,θ) = dδ0(t)dν(θ).

For each θ, the function t 7→ |t|n−1 f̂ (tθ) must be positive definite.
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Lutwak’s connection for Problem 2.

We now formulate analogs of Lutwak’s connections for Problem 2.

Theorem 4. Let p > 0 and consider a pair of continuous, non-negative even
functions ϕ,ψ ∈ L1(IRn)∩Lp(IRn) satisfying the condition

Rϕ(t,θ)≤Rψ(t,θ) for all (t,θ) ∈ IR×Sn−1. (4)

Then:
(a) if p > 1 and ϕp−1 is an intersection function, then

‖ϕ‖Lp(IRn) ≤ ‖ψ‖Lp(IRn);

(b) if 0< p < 1 and ψp−1 is an intersection function, then

‖ϕ‖Lp(IRn) ≤ ‖ψ‖Lp(IRn).

.
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Lutwak’s connection for Problem 2.

We also give a counterexample to Problem 2.

Theorem 5.
(a) Fix p > 1 and let ψ ∈ S(IRn) be strictly positive and even. If ψp−1 is not

an intersection function, then there exists an even, non-negative function
ϕ such that ϕp−1 ∈ S(IRn) and

Rϕ(t,θ)≤Rψ(t,θ) for all (t,θ) ∈ IR×Sn−1,

but with ‖ψ‖Lp(IRn) < ‖ϕ‖Lp(IRn).

(b) Fix 0< p < 1 and let ϕ ∈ S(IRn) be strictly positive and even. If ϕp−1 is
not an intersection function, then there exists a non-negative, even
function ψ such that ψp−1 ∈ S(IRn) and

Rϕ(t,θ)≤Rψ(t,θ) for all (t,θ) ∈ IR×Sn−1,

but with ‖ψ‖Lp(IRn) < ‖ϕ‖Lp(IRn).
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Slicing inequalities 1.

The slicing problem of Bourgain: Does there exist an absolute constant C > 0
such that, for any n ∈ N and for any origin-symmetric convex body K in IRn,

|K |
n−1

n ≤ C max
θ∈Sn−1

|K ∩θ⊥|?

The best-to-date estimate C ≤ O(
√

logn) is due to Klartag.

A version for arbitrary functions was proved in K. 2015: for any n ∈ N, any star
body K in IRn and any non-negative continuous function f on K , one has∫

K
f ≤ 2dovr(K ,In) |K |

1
n max
θ∈Sn−1

Rf (θ),

where

dovr(K ,In) = inf

{(
|D|
|K |

)1/n
: K ⊂ D, D ∈ In

}
.

This means that if K is origin-symmetric convex and |K |= 1,
∫

K f = 1, then
there exists a direction θ for which Rf (θ)≥ 1

2
√

n .
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Slicing inequalities 2.
We get a slicing inequality of a different kind from Theorem 1. If the function
g is constant with the value

g ≡ 1
|Sn−2|

max
ξ∈Sn−1

∫
Sn−1∩ξ⊥

f (θ)dθ,

then f and g satisfy the conditions of the theorem, and we get
Corollary 1. Let f be a positive even, continuous function on the sphere Sn−1

Assume p > 1 and if |x |−1
2 f p−1

(
x
|x |2

)
represents a positive definite

distribution on IRn, then

‖f ‖Lp(Sn−1) ≤
|Sn−1|

1
p

|Sn−2|
max
ξ∈Sn−1

Rf (ξ).

Similarly, in the case 0< p < 1 we get
Corollary 2. Let g be a positive even, continuous function on the sphere Sn−1.

Assume that 0< p < 1 and |x |−1
2 gp−1

(
x
|x |2

)
represents a positive definite

distribution on IRn, then

‖g‖Lp(Sn−1) ≥
|Sn−1|

1
p

|Sn−2|
min

ξ∈Sn−1
Rg(ξ).
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Slicing inequalities 3.

As proved in K.1998, an origin-symmetric star body K ⊂ IRn is an intersection
body if, and only if, ‖ · ‖−1

K represents a positive definite distribution on IRn.
Therefore, a positive even continuous function f on the sphere has the property
that the distribution f p−1 · r−1 is positive definite if, and only if, f = ‖ · ‖

− 1
p−1

K
for some intersection body K .

Combining this observation with Corollary 1, we get that for any intersection
body K in IRn and any p > 1(∫

Sn−1
‖x‖
− p

p−1
K dx

) 1
p

≤ |S
n−1|

1
p

|Sn−2|
max
ξ∈Sn−1

(∫
Sn−1∩ξ⊥

‖x‖
− 1

p−1
K dx

)
.

When p = n
n−1 , the latter inequality turns into Bourgain’s slicing inequality for

intersection bodies.(∫
Sn−1
‖x‖−n

K dx
) n−1

n

≤ |S
n−1|

n−1
n

|Sn−2|
max
ξ∈Sn−1

(∫
Sn−1∩ξ⊥

‖x‖−n+1
K dx

)
.
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Connection with inequalities of the Oberlin-Stein type.
The inequality of Corollary 1 can be considered as the reverse to the
Oberlin-Stein type inequalities for the Radon transform.

Oberlin and Stein: Given any function f ∈ Lp(IRn), one has that(∫
Sn−1

(∫
IR
|Rf (t,θ)|rdt

) q
r

dθ

) 1
q

≤ Cn,p,q‖f ‖Lp(IRn),

if, and only if, 1≤ p < n
n−1 , q ≤ p′ (p−1 +p′−1 = 1), and 1

r = n
p −n+1.

It was also proved by Oberlin-Stein that for every n ≥ 3 one has(∫
Sn−1

sup
t∈IR
|Rf (t,θ)|sdθ

) 1
s

≤ Cp1,p2,s‖f ‖
α
Lp1 (IRn)‖f ‖

1−α
Lp2 (IRn)

whenever s ≤ n, 1≤ p1 <
n

n−1 < p2 ≤∞, and α
p1

+ 1−α
p2

= n−1
n .

If χA is the characteristic function of a measurable set A⊂ IRn and s = n, then
as p1,p2→ n

n−1 , the latter inequality becomes(∫
Sn−1

(
sup
t∈IR
|A∩ (θ⊥+ tθ)|

)n) 1
n

≤ Cn|A|
1
n .

If A is an origin-symmetric convex body in IRn, by Brunn’s theorem the
supremum is achieved at t = 0, and one gets and the Busemann intersection
inequality. This connection was first observed by Lutwak.
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