Equivariant Valuations of Convex Functions

Georg Hofstätter
jointly with Jonas Knoerr
Friedrich-Schiller-University Jena

INdAM Meeting: Convex geometry - analytic aspects
Cortona, June 26-30, 2023

Affine constructions on convex bodies

- Difference body $D: \mathcal{K}^{n} \rightarrow \mathcal{K}^{n}$

$$
D K=K+(-K)=\{x-y: x, y \in K\}
$$

$\mathcal{K}^{n} \quad \ldots$ convex bodies (compact, convex subsets of \mathbb{R}^{n})

Affine constructions on convex bodies

- Difference body $D: \mathcal{K}^{n} \rightarrow \mathcal{K}^{n}$

$$
D K=K+(-K)=\{x-y: x, y \in K\}
$$

- Projection body $\Pi: \mathcal{K}^{n} \rightarrow \mathcal{K}^{n}$

$$
V_{1}(\Pi K \mid \operatorname{span}\{u\})=2 V_{n-1}\left(K \mid u^{\perp}\right), \quad u \in \mathbb{S}^{n-1}
$$

$\mathcal{K}^{n} \quad \ldots$ convex bodies (compact, convex subsets of \mathbb{R}^{n})
$V_{i} \quad \ldots \quad$ volume $\left(\right.$ on $\left.\mathbb{R}^{i}\right)$
$K \mid E \quad \ldots \quad$ orthogonal projection onto subspace E

Affine constructions on convex bodies

- D is 1-homogeneous and $\mathrm{SL}_{n}(\mathbb{R})$-equivariant, i.e.

$$
D(\eta K)=\eta D(K), \quad \eta \in \mathrm{SL}_{n}(\mathbb{R})
$$

Affine constructions on convex bodies

- D is 1-homogeneous and $\operatorname{SL}_{n}(\mathbb{R})$-equivariant, i.e.

$$
D(\eta K)=\eta D(K), \quad \eta \in \mathrm{SL}_{n}(\mathbb{R})
$$

- Π is $(n-1)$-homogeneous and $\mathrm{SL}_{n}(\mathbb{R})$-contravariant, i.e.

$$
\Pi(\eta K)=\eta^{-T} \Pi(K), \quad \eta \in \mathrm{SL}_{n}(\mathbb{R})
$$

Affine constructions on convex bodies

- D is 1-homogeneous and $\mathrm{SL}_{n}(\mathbb{R})$-equivariant, i.e.

$$
D(\eta K)=\eta D(K), \quad \eta \in \mathrm{SL}_{n}(\mathbb{R})
$$

- Π is $(n-1)$-homogeneous and $\mathrm{SL}_{n}(\mathbb{R})$-contravariant, i.e.

$$
\Pi(\eta K)=\eta^{-T} \Pi(K), \quad \eta \in \mathrm{SL}_{n}(\mathbb{R})
$$

D and Π are Minkowski valuations:

Definition

A continuous map $\Phi: \mathcal{K}^{n} \rightarrow \mathcal{K}^{n}$ is called a Minkowski valuation, if

$$
\Phi(K \cup L)+\Phi(K \cap L)=\Phi(K)+\Phi(L), \quad \forall K, L, K \cup L \in \mathcal{K}^{n}
$$

Characterization of D and Π

Theorem (Ludwig 2005)

Suppose that $\Phi: \mathcal{K}^{n} \rightarrow \mathcal{K}^{n}$ is a translation-invariant Minkowski valuation.
$-\Phi$ is $\operatorname{SL}_{n}(\mathbb{R})$-equivariant $\Leftrightarrow \Phi=c D, c \geq 0$.

We always silently assume $n \geq 3$.

Characterization of D and Π

Theorem (Ludwig 2005)
Suppose that $\Phi: \mathcal{K}^{n} \rightarrow \mathcal{K}^{n}$ is a translation-invariant Minkowski valuation.

- Φ is $\mathrm{SL}_{n}(\mathbb{R})$-equivariant

$$
\begin{array}{ll}
\Leftrightarrow & \Phi=c D, c \geq 0 . \\
\Leftrightarrow & \Phi=c \Pi, c \geq 0 .
\end{array}
$$

- Φ is $\mathrm{SL}_{n}(\mathbb{R})$-contravariant

We always silently assume $n \geq 3$.

Our setting

Finite convex functions

$$
\operatorname{Conv}\left(\mathbb{R}^{n}, \mathbb{R}\right):=\left\{f: \mathbb{R}^{n} \rightarrow \mathbb{R}: f \text { convex }\right\}
$$

with

- epi-convergence (i.e. uniform convergence on compact sets)
- $\mathrm{SL}_{n}(\mathbb{R})$-action: $\quad(\varphi \cdot f)(x)=f\left(\varphi^{-1} x\right), \quad \varphi \in \mathrm{SL}_{n}(\mathbb{R})$

Our setting

Finite convex functions

$$
\operatorname{Conv}\left(\mathbb{R}^{n}, \mathbb{R}\right):=\left\{f: \mathbb{R}^{n} \rightarrow \mathbb{R}: f \text { convex }\right\}
$$

with

- epi-convergence (i.e. uniform convergence on compact sets)
- $\mathrm{SL}_{n}(\mathbb{R})$-action: $\quad(\varphi \cdot f)(x)=f\left(\varphi^{-1} x\right), \quad \varphi \in \mathrm{SL}_{n}(\mathbb{R})$

Example

Support functions of $K \in \mathcal{K}^{n}$

$$
h_{K}(x)=\sup _{y \in K}\langle x, y\rangle, \quad x \in \mathbb{R}^{n}
$$

Valuations on convex functions

We want to consider maps $\Psi: \operatorname{Conv}\left(\mathbb{R}^{n}, \mathbb{R}\right) \rightarrow \operatorname{Conv}\left(\mathbb{R}^{n}, \mathbb{R}\right)$, which are

- continuous
- dually epi-translation-invariant: $\forall \lambda$ affine

$$
\Psi(f+\lambda)=\Psi(f)
$$

Valuations on convex functions

We want to consider maps $\Psi: \operatorname{Conv}\left(\mathbb{R}^{n}, \mathbb{R}\right) \rightarrow \operatorname{Conv}\left(\mathbb{R}^{n}, \mathbb{R}\right)$, which are

- continuous
- dually epi-translation-invariant: $\forall \lambda$ affine

$$
\Psi(f+\lambda)=\Psi(f)
$$

- valuations: $\forall f, g, f \wedge g \in \operatorname{Conv}\left(\mathbb{R}^{n}, \mathbb{R}\right)$

$$
\Psi(f \wedge g)+\Psi(f \vee g)=\Psi(f)+\Psi(g)
$$

Valuations on convex functions

We want to consider maps $\Psi: \operatorname{Conv}\left(\mathbb{R}^{n}, \mathbb{R}\right) \rightarrow \operatorname{Conv}\left(\mathbb{R}^{n}, \mathbb{R}\right)$, which are

- continuous
- dually epi-translation-invariant: $\forall \lambda$ affine

$$
\Psi(f+\lambda)=\Psi(f)
$$

- valuations: $\forall f, g, f \wedge g \in \operatorname{Conv}\left(\mathbb{R}^{n}, \mathbb{R}\right)$

$$
\Psi(f \wedge g)+\Psi(f \vee g)=\Psi(f)+\Psi(g)
$$

- $\mathrm{SL}_{n}(\mathbb{R})$-equi-/contravariant

Previous results

Ludwig 2012: $\Psi: W^{1,1}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{K}_{c}^{n}$
Colesanti, Ludwig, Mussnig 2017: $\Psi: \operatorname{Conv}_{c}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{K}^{n}$

Previous results

Ludwig 2012:

$$
\Psi: W^{1,1}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{K}_{c}^{n}
$$

Colesanti, Ludwig, Mussnig 2017: $\Psi: \operatorname{Conv}_{c}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{K}^{n}$
Theorem (H. \& Knoerr 2023)
Suppose that $\Psi: \operatorname{Conv}\left(\mathbb{R}^{n}, \mathbb{R}\right) \rightarrow \operatorname{Conv}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ is continuous and additive.
Ψ is $\mathrm{SL}_{n}(\mathbb{R})$-equivariant
$\Leftrightarrow \quad \exists c \in \mathbb{R}, \nu \in \mathcal{M}_{c}^{+}(\mathbb{R})$ with $\int_{\mathbb{R}^{x}}|s|^{-1} d \nu(s)<\infty$, s.t.

$$
\Psi(f)[x]=c \cdot f(0)+\int_{\mathbb{R}^{x}} \frac{f(s x)-f(0)}{s^{2}} d \nu(s), \quad x \in \mathbb{R}^{n},
$$

for every $f \in \operatorname{Conv}\left(\mathbb{R}^{n}, \mathbb{R}\right)$.
$\mathcal{M}_{c}^{+}(\mathbb{R}) \quad \ldots \quad$ non-negative finite measures on \mathbb{R} with compact support

Previous results

Ludwig 2012:

$$
\Psi: W^{1,1}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{K}_{c}^{n}
$$

Colesanti, Ludwig, Mussnig 2017: $\Psi: \operatorname{Conv}_{c}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{K}^{n}$

Theorem (H. \& Knoerr 2023)
Suppose that $\Psi: \operatorname{Conv}\left(\mathbb{R}^{n}, \mathbb{R}\right) \rightarrow \operatorname{Conv}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ is continuous and additive.
Ψ is $\mathrm{SL}_{n}(\mathbb{R})$-equivariant
$\Leftrightarrow \quad \exists c \in \mathbb{R}, \nu \in \mathcal{M}_{c}^{+}(\mathbb{R})$ with $\int_{\mathbb{R}^{x}}|s|^{-1} d \nu(s)<\infty$, s.t.

$$
\Psi(f)[x]=c \cdot f(0)+\int_{\mathbb{R}^{x}} \frac{f(s x)-f(0)}{s^{2}} d \nu(s), \quad x \in \mathbb{R}^{n},
$$

for every $f \in \operatorname{Conv}\left(\mathbb{R}^{n}, \mathbb{R}\right)$.
e.g. $\Psi(f)[x]=f(x)+f(-x), x \in \mathbb{R}^{n}$
$\mathcal{M}_{c}^{+}(\mathbb{R}) \quad \ldots \quad$ non-negative finite measures on \mathbb{R} with compact support

Equivariant valuations on $\operatorname{Conv}\left(\mathbb{R}^{n}, \mathbb{R}\right)$

Theorem (H. \& Knoerr 2023+)
Suppose that $\Psi: \operatorname{Conv}\left(\mathbb{R}^{n}, \mathbb{R}\right) \rightarrow \operatorname{Conv}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ is a continuous, dually epi-translation-invariant valuation.
Ψ is $\mathrm{SL}_{n}(\mathbb{R})$-equivariant $\Leftrightarrow \exists c \in \mathbb{R}, \nu \in \mathcal{M}_{c}^{+}(\mathbb{R})$, s.t.

$$
\int_{\mathbb{R}^{\times}}|s|^{-1} d \nu(s)<\infty \quad \text { and } \quad \int_{\mathbb{R}^{\times}} s^{-1} d \nu(s)=0
$$

and

$$
\Psi(f)[x]=c+\int_{\mathbb{R}^{x}} \frac{f(s x)-f(0)}{s^{2}} d \nu(s), \quad x \in \mathbb{R}^{n}
$$

for every $f \in \operatorname{Conv}\left(\mathbb{R}^{n}, \mathbb{R}\right)$.

Notes on the proof

- $\Psi_{x}: f \mapsto \Psi(f)[x]$ is a valuation on $\operatorname{Conv}\left(\mathbb{R}^{n}, \mathbb{R}\right), x \neq 0 \in \mathbb{R}^{n}$

Notes on the proof

- $\Psi_{x}: f \mapsto \Psi(f)[x]$ is a valuation on $\operatorname{Conv}\left(\mathbb{R}^{n}, \mathbb{R}\right), x \neq 0 \in \mathbb{R}^{n}$
- Goodey-Weil distribution for $\operatorname{VConv}_{k}\left(\mathbb{R}^{n}\right)($ Knoerr 2021)

$$
\mathrm{GW}: \operatorname{VConv}_{k}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{D}_{c}^{\prime}\left(\left(\mathbb{R}^{n}\right)^{k}\right)
$$

$\operatorname{VConv}_{k}\left(\mathbb{R}^{n}\right) \quad \ldots$ epi-continuous, k-homogeneous, dually epi-translation-invariant valuations
$\mathcal{D}_{c}^{\prime}\left(\left(\mathbb{R}^{n}\right)^{k}\right) \quad \ldots$ distributions with compact support

Notes on the proof

- $\Psi_{x}: f \mapsto \Psi(f)[x]$ is a valuation on $\operatorname{Conv}\left(\mathbb{R}^{n}, \mathbb{R}\right), x \neq 0 \in \mathbb{R}^{n}$
- Goodey-Weil distribution for $\operatorname{VConv}_{k}\left(\mathbb{R}^{n}\right)($ Knoerr 2021)

$$
\mathrm{GW}: \mathrm{VConv}_{k}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{D}_{c}^{\prime}\left(\left(\mathbb{R}^{n}\right)^{k}\right)
$$

- $\mathrm{SL}_{n}(\mathbb{R})$-equivariance $\Longrightarrow \mathrm{GW}\left(\Psi_{x}\right)$ is $\mathrm{SL}_{n}(\mathbb{R})_{x}$-invariant
$\operatorname{VConv}_{k}\left(\mathbb{R}^{n}\right) \quad \ldots \quad$ epi-continuous, k-homogeneous, dually epi-translation-invariant valuations
$\mathcal{D}_{c}^{\prime}\left(\left(\mathbb{R}^{n}\right)^{k}\right) \quad \ldots$ distributions with compact support

Notes on the proof

- $\Psi_{x}: f \mapsto \Psi(f)[x]$ is a valuation on $\operatorname{Conv}\left(\mathbb{R}^{n}, \mathbb{R}\right), x \neq 0 \in \mathbb{R}^{n}$
- Goodey-Weil distribution for $\operatorname{VConv}_{k}\left(\mathbb{R}^{n}\right)($ Knoerr 2021)

$$
\mathrm{GW}: \operatorname{VConv}_{k}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{D}_{c}^{\prime}\left(\left(\mathbb{R}^{n}\right)^{k}\right)
$$

- $\mathrm{SL}_{n}(\mathbb{R})$-equivariance $\Longrightarrow \mathrm{GW}\left(\Psi_{x}\right)$ is $\mathrm{SL}_{n}(\mathbb{R})_{x}$-invariant
- compact support
\Longrightarrow support is 1-dimensional
$\operatorname{VConv}_{k}\left(\mathbb{R}^{n}\right) \quad \ldots$ epi-continuous, k-homogeneous, dually epi-translation-invariant valuations
$\mathcal{D}_{c}^{\prime}\left(\left(\mathbb{R}^{n}\right)^{k}\right) \quad \ldots$ distributions with compact support

Notes on the proof

Theorem (H. \& Knoerr 2023+)
Suppose that $\mu \in \operatorname{VConv}_{k}\left(\mathbb{R}^{n}\right)$ and $E \in \operatorname{Gr}_{i}\left(\mathbb{R}^{n}\right), 0 \leq i \leq n-1$.
If supp $\mathrm{GW}(\mu) \subseteq \Delta(E) \Longrightarrow \exists \mu_{E} \in \operatorname{VConv}_{k}(E)$, s.t.

$$
\mu(f)=\mu_{E}\left(\left.f\right|_{E}\right),
$$

for all $f \in \operatorname{Conv}\left(\mathbb{R}^{n}, \mathbb{R}\right)$.
$\Delta(y)=(y, \ldots, y) \in\left(\mathbb{R}^{n}\right)^{k}$

Idea: $\mathrm{GW}(\mu)[\varphi]$ cannot depend on "normal" derivatives

Notes on the proof
$\Longrightarrow \Psi_{x}=\Psi_{x}^{0}+\Psi_{x}^{1}$, with $\Psi_{x}^{i} \in \operatorname{VConv}_{i}\left(\mathbb{R}^{n}\right)$

Notes on the proof

$\Longrightarrow \Psi_{x}=\Psi_{x}^{0}+\Psi_{x}^{1}$, with $\Psi_{x}^{i} \in \operatorname{VConv}_{i}\left(\mathbb{R}^{n}\right)$

- 0-homogeneous: $\Psi_{x}^{0} \equiv c, c \in \mathbb{R}$

Notes on the proof

$\Longrightarrow \Psi_{x}=\Psi_{x}^{0}+\Psi_{x}^{1}$, with $\Psi_{x}^{i} \in \operatorname{VConv}_{i}\left(\mathbb{R}^{n}\right)$

- 0-homogeneous: $\Psi_{x}^{0} \equiv c, c \in \mathbb{R}$
- 1-homogeneous: use characterisation of additive maps

Notes on the proof

$\Longrightarrow \Psi_{x}=\Psi_{x}^{0}+\Psi_{x}^{1}$, with $\Psi_{x}^{i} \in \operatorname{VConv}_{i}\left(\mathbb{R}^{n}\right)$

- 0-homogeneous: $\Psi_{x}^{0} \equiv c, c \in \mathbb{R}$
- 1-homogeneous: use characterisation of additive maps

$$
\Longrightarrow \Psi(f)[x]=c+\int_{\mathbb{R}^{\times}} \frac{f(s x)-f(0)}{s^{2}} d \nu(s), \quad x \in \mathbb{R}^{n}
$$

Contravariant valuations on $\operatorname{Conv}\left(\mathbb{R}^{n}, \mathbb{R}\right)$

Suppose now that Ψ is $\mathrm{SL}_{n}(\mathbb{R})$-contravariant.

- supp $\mathrm{GW}\left(\Psi_{x}\right)$ is compact!
- $\mathrm{GW}\left(\Psi_{x}\right)$ is invariant under $\left\{\eta \in \mathrm{SL}_{n}(\mathbb{R}): \eta^{T} x=x\right\}$

Contravariant valuations on $\operatorname{Conv}\left(\mathbb{R}^{n}, \mathbb{R}\right)$

Suppose now that Ψ is $\mathrm{SL}_{n}(\mathbb{R})$-contravariant.

- supp $\mathrm{GW}\left(\Psi_{x}\right)$ is compact!
- $\mathrm{GW}\left(\Psi_{x}\right)$ is invariant under $\left\{\eta \in \mathrm{SL}_{n}(\mathbb{R}): \eta^{T} x=x\right\}$
- transitive on $x^{\perp} \Longrightarrow \operatorname{supp} \mathrm{GW}\left(\Psi_{x}\right) \cap\left(\{t x\}+x^{\perp}\right)=\{0\}$

Contravariant valuations on $\operatorname{Conv}\left(\mathbb{R}^{n}, \mathbb{R}\right)$

Suppose now that Ψ is $\mathrm{SL}_{n}(\mathbb{R})$-contravariant.

- supp $\mathrm{GW}\left(\Psi_{x}\right)$ is compact!
- $\mathrm{GW}\left(\Psi_{x}\right)$ is invariant under $\left\{\eta \in \mathrm{SL}_{n}(\mathbb{R}): \eta^{T} x=x\right\}$
- transitive on $x^{\perp} \Longrightarrow \operatorname{supp} \mathrm{GW}\left(\Psi_{x}\right) \cap\left(\{t x\}+x^{\perp}\right)=\{0\}$
- shear mappings $\Longrightarrow \operatorname{supp} \mathrm{GW}\left(\Psi_{x}\right) \subset\{0\}$

Contravariant valuations on $\operatorname{Conv}\left(\mathbb{R}^{n}, \mathbb{R}\right)$

Suppose now that Ψ is $\mathrm{SL}_{n}(\mathbb{R})$-contravariant.

- supp $\mathrm{GW}\left(\Psi_{x}\right)$ is compact!
- $\mathrm{GW}\left(\Psi_{x}\right)$ is invariant under $\left\{\eta \in \mathrm{SL}_{n}(\mathbb{R}): \eta^{T} x=x\right\}$
- transitive on $x^{\perp} \Longrightarrow \operatorname{supp} \mathrm{GW}\left(\Psi_{x}\right) \cap\left(\{t x\}+x^{\perp}\right)=\{0\}$
- shear mappings $\Longrightarrow \operatorname{supp} \mathrm{GW}\left(\Psi_{x}\right) \subset\{0\}$

Theorem (H. \& Knoerr 2023+)
Suppose that $\Psi: \operatorname{Conv}\left(\mathbb{R}^{n}, \mathbb{R}\right) \rightarrow \operatorname{Conv}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ is a continuous, dually epi-translation-invariant valuation.
Ψ is $\mathrm{SL}_{n}(\mathbb{R})$-contravariant $\Leftrightarrow \Psi \equiv c, c \in \mathbb{R}$.

Thank you for your attention!

