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Funk and Hilbert geometries

Assume K C R" is a convex body with int(K) # 0.

Definition

The Funk metric on int(K) is the non-reversible Finsler metric whose unit
tangent ball B,K is K, with x at the origin. Equivalently, ¢k |«(v) = ||v||k—x.

It is an affine-invariant construction. The distance is df(x,y) = log %

Definition

The Hilbert metric is

1 1 xz||w:
d;i;,(X,y) = E(dff(xvy) + d;’(r(y7x)) = 5 |og %

Like the cross ratio, the Hilbert metric is projectively invariant.
e Both are examples of " projective metrics”: straight segments are geodesics.

e Example. The Funk metric in the unit Euclidean ball is
dr(x,y) = du(x,y) + f(y) — f(x) where dy is the Beltrami-Klein hyperbolic
metric (also the Hilbert metric in the ball), and f(x) = —3 log(1 — |x|?).
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Volume in Funk geometry

The outward ball in Funk metric is

BE(q,r) = {x: df(a,x) <} = (1—e ")(K - q)+q.
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The outward ball in Funk metric is

BE(q,r) = {x: df(a,x) <} = (1—e ")(K - q)+q.

The Holmes-Thompson volume of A C int(K) is volk(A) = wp * Sa |KX|dx, where
K* C (R")* is the polar body with respect to x.
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Volume in Funk geometry

The outward ball in Funk metric is

BE(q,r) = {x: df(a,x) <} = (1—e ")(K - q)+q.

The Holmes-Thompson volume of A C int(K) is volk(A) = wp * Sa |KX|dx, where
K* C (R")* is the polar body with respect to x.

We will consider the volume of Funk balls:
volk (Bk (0, r)) = w;lf K*|dx.
(1—e=N)K
Basic properties:
o Multiplicativity. Assume K C R?, L C RP. Then
(2 + b)lwayp volk 1 (Brx1((p; q), r)) = alwavolk (Bk(p, r)) - blwp vol (Bi(q, r)).
e Duality. Assume 0 € int(K). Then voly(Bk(0, r)) = volko (Bko (0, r)).

Corollary. If Hy is a centered n-dimensional Hanner polytope, and A =1—e~",

2n 1+2\"
voly, (Bn (o,r)):w;1/ \HX|dx = (logL> .
" " A nlwn 11—

n
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Projective invariance

Let g : RP” — RP” be a collineation (fractional linear map), and assume g(K) C R".
Let ¢i be the Funk Finsler norm on int(K).
Then g*¢gx — ¢k € C(TK) is an exact 1-form.
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Projective invariance

Let g : RP” — RP” be a collineation (fractional linear map), and assume g(K) C R".
Let ¢i be the Funk Finsler norm on int(K).
Then g*¢gx — ¢k € C(TK) is an exact 1-form.

Funk volume is projectively invariant: voly(A) = volgk (gA).

Furthermore, the Funk metric exhibits projective duality.

For K C RP", KY = {¢ € (RP") : £nint(K) = 0} is its polar convex body.

If K C L are two convex bodies in RP?, then vol; (K) = vol,v (LY).
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Asymptotics of volume

Asymptotics of volumes of metric balls:

- As r — 0, vol(Bk (0, r)) ~ wy t|K x K°|r".
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Asymptotics of volume

Asymptotics of volumes of metric balls:
- As r — 0, vol(Bk(0, r)) ~ wy t|K x K°|r".

- As r — 0o, we have

Theorem (Berck-Bernig-Vernicos, adjusted to Funk metric)

r

When K C R" is C? and strictly convex, vol(Bk(q, r)) ~ c,Qa(K, q)e"T_1 .
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Asymptotics of volume

Asymptotics of volumes of metric balls:
- As r — 0, vol(Bk(0, r)) ~ wy t|K x K°|r".

- As r — 0o, we have

Theorem (Berck-Bernig-Vernicos, adjusted to Funk metric)

When K C R" is C? and strictly convex, vol(Bk(q, r)) ~ c,Qa(K, q)e"T_l’.

1/2
Here Qa(K, q) = [, mdﬂ"fl(x) is the centro-affine area of K

with center at q.
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Asymptotics of volume

Asymptotics of volumes of metric balls:
- As r — 0, vol(Bk(0, r)) ~ wy t|K x K°|r".

- As r — 0o, we have

Theorem (Berck-Bernig-Vernicos, adjusted to Funk metric)

When K C R" is C? and strictly convex, vol(Bk(q, r)) ~ c,Qa(K, q)e"T_l’.

(L2
Here Qn(K,q) = faK W

with center at q.

dH""Y(x) is the centro-affine area of K

Remark. Berck-Bernig-Vernicos obtain the result in the Hilbert metric setting
under the weaker C1! assumption and no strict convexity.
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The leading coefficient

A (full) flagof Pisachain f=(0=f1CfoCAC- - C fo_1 C fn = P), where
fi € Fj(P) is a j-dimensional face of P.
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A (full) flagof Pisachain f=(0=f1CfoCAC- - C fo_1 C fn = P), where
fi € Fj(P) is a j-dimensional face of P.

Theorem (Vernicos-Walsh '18)

In Hilbert geometry, if P C R" is a convex polytope then

volB(BH (g, r)) = cn|Flags(P)|r" 4+ o(r"), r — oco.
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A (full) flagof Pisachain f=(0=f1CfoCAC- - C fo_1 C fn = P), where
fi € Fj(P) is a j-dimensional face of P.

Theorem (Vernicos-Walsh '18)

In Hilbert geometry, if P C R" is a convex polytope then

volB(BH (g, r)) = cn|Flags(P)|r" 4+ o(r"), r — oco.

Theorem (F-Vernicos-Walsh)

If P C R" is a convex polytope, then

1
volb(Bf(q,r)) = —— |Flags(P)|r" + o(r"), r— o0
Wn

(n!)

The flag number | Flags(P)| of P is a combinatorial analogue of centro-affine surface
area.
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The leading coefficient

A (full) flagof Pisachain f=(0=f1CfoCAC- - C fo_1 C fn = P), where
fi € Fj(P) is a j-dimensional face of P.

Theorem (Vernicos-Walsh '18)

In Hilbert geometry, if P C R" is a convex polytope then

volB(BH (g, r)) = cn|Flags(P)|r" 4+ o(r"), r — oco.

Theorem (F-Vernicos-Walsh)

If P C R" is a convex polytope, then

1
volb(Bf(q,r)) = —— |Flags(P)|r" + o(r"), r— o0
Wn

(n!)

The flag number | Flags(P)| of P is a combinatorial analogue of centro-affine surface
area.

Theorem (Schiitt '91)

If P C R" is a convex polytope, and Ps its floating body, then

1 1\t
vol,(P) — voln(Ps) ~ T |Flags(P)|& (Iog g> , 6—07"
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The Funk-Mabhler conjecture

Conjecture (FVW)

For any 0 < r < oo, M,(K, q) := wy volk(Bk(q, r)) is minimized:
- By centered simplices in general.
- By centered Hanner polytopes among centrally-symmetric convex bodies K.
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For any 0 < r < oo, M,(K, q) := wy volk(Bk(q, r)) is minimized:
- By centered simplices in general.
- By centered Hanner polytopes among centrally-symmetric convex bodies K.

e When r — 0, this becomes Mabhler’s conjecture.
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The Funk-Mabhler conjecture

Conjecture (FVW)

For any 0 < r < oo, M,(K, q) := wy volk(Bk(q, r)) is minimized:
- By centered simplices in general.
- By centered Hanner polytopes among centrally-symmetric convex bodies K.

e When r — 0, this becomes Mabhler’s conjecture.

e When r — oo and K = P a polytope, r "M, (P, q) — c.|Flags(P)|.

e Among all convex polytopes P, |Flags(P)| is trivially minimized by simplices.
Flag Conjecture (Kalai '89)

For centrally-symmetric P, |Flags(P)| > 2"n!, equality for Hanner polytopes.

Related:

3¢ Conjecture (Kalai '89)

Among centrally-symmetric polytopes, the total face number
|Fo(P)| + - - + |Fa(P)| > 3". Equality is attained by Hanner polytopes.

= = = =
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Lower bounds

The Mahler conjecture is known up to dimension 2 in general (Mahler).

The centrally-symmetric Mahler is known in dimension 3 (Iriyeh-Shibata 2020),
for unconditional convex bodies (Saint Raymond '81), zonoids (Reisner '86),
some other settings.
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Lower bounds

The Mabhler conjecture is known up to dimension 2 in general (Mahler).

The centrally-symmetric Mahler is known in dimension 3 (Iriyeh-Shibata 2020),
for unconditional convex bodies (Saint Raymond '81), zonoids (Reisner '86),
some other settings.

Theorem (F-Vernicos-Walsh)

For any 0 < r < oo, Hanner polytopes uniquely minimize voly(Bxk(r,0)) among
all unconditional convex bodies K, .
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The Mabhler conjecture is known up to dimension 2 in general (Mahler).

The centrally-symmetric Mahler is known in dimension 3 (Iriyeh-Shibata 2020),
for unconditional convex bodies (Saint Raymond '81), zonoids (Reisner '86),
some other settings.

Theorem (F-Vernicos-Walsh)

For any 0 < r < oo, Hanner polytopes uniquely minimize voly(Bxk(r,0)) among
all unconditional convex bodies K, .

Taking r — oo we make some progress towards Kalai's flag conjecture.

Corollary (F-Vernicos-Walsh)

For unconditional polytopes P,

Flags(P)| > 2"n!.
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The centrally-symmetric Mahler is known in dimension 3 (Iriyeh-Shibata 2020),
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some other settings.

Theorem (F-Vernicos-Walsh)

For any 0 < r < oo, Hanner polytopes uniquely minimize voly(Bxk(r,0)) among
all unconditional convex bodies K, .

Taking r — oo we make some progress towards Kalai's flag conjecture.

Corollary (F-Vernicos-Walsh)

For unconditional polytopes P, | Flags(P)| > 2"n!.

Equality cases are lost in the limit. But we will say something about equality
cases later on.
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Lower bounds

The Mabhler conjecture is known up to dimension 2 in general (Mahler).

The centrally-symmetric Mahler is known in dimension 3 (Iriyeh-Shibata 2020),
for unconditional convex bodies (Saint Raymond '81), zonoids (Reisner '86),
some other settings.

Theorem (F-Vernicos-Walsh)

For any 0 < r < oo, Hanner polytopes uniquely minimize voly(Bxk(r,0)) among
all unconditional convex bodies K, .

Taking r — oo we make some progress towards Kalai's flag conjecture.

Corollary (F-Vernicos-Walsh)

For unconditional polytopes P, | Flags(P)| > 2"n!.

Equality cases are lost in the limit. But we will say something about equality
cases later on.

Theorem (Chambers '22)
For unconditional polytopes P, |Fo(P)| + - -- + |Fa(P)| > 3".

il = = = =
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The monodromy group of a polytope

Fix a flag f € Flags(P), explicitly

0=f1=hC---Ch1Chh=P.
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The monodromy group of a polytope

Fix a flag f € Flags(P), explicitly

P=f1=HhC - Chh1Chh=P.
@ For 0 </ < n—1, there is a unique flag f’ € Flags(P) such that f/ = f; or
all j # i, and f/ # f.
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The monodromy group of a polytope

Fix a flag f € Flags(P), explicitly
D=f1=fhC --ChhaCfh=P
@ For 0 </ < n—1, there is a unique flag f’ € Flags(P) such that f/ = f; or
all j # i, and f/ # f.
@ The i-flip r; : Flags(P) — Flags(P) is defined by r;(f) := f’. Thus r? = id.

Dmitry Faifman



Funk geometry in polytopes
©00

The monodromy group of a polytope

Fix a flag f € Flags(P), explicitly
D=f1=fhC --ChhaCfh=P
@ For 0 </ < n—1, there is a unique flag f’ € Flags(P) such that f/ = f; or
all j # i, and f/ # f.
@ The i-flip r; : Flags(P) — Flags(P) is defined by r;(f) := f’. Thus r? = id.

@ The monodromy group Gp is generated by all i-flips ry,...,r,—1. It acts on
Flags(P).
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The monodromy group of a polytope

Fix a flag f € Flags(P), explicitly
D=f1=fhC --ChhaCfh=P
@ For 0 </ < n—1, there is a unique flag f’ € Flags(P) such that f/ = f; or
all j # i, and f/ # f.
@ The i-flip r; : Flags(P) — Flags(P) is defined by r;(f) := f’. Thus r? = id.

@ The monodromy group Gp is generated by all i-flips ry,...,r,—1. It acts on
Flags(P).

@ Define the complete flip r == rp,_10r_20---0r € Gp.

Dmitry Faifman
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Two terms asymptotics

For a facet F € F,_1(P), write F € Fo(P°) for the corresponding vertex.
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Two terms asymptotics

For a facet F € F,_1(P), write F € Fo(P°) for the corresponding vertex.

Theorem (F-Vernicos-Walsh)

For a polytope P C R" with 0 € int(P) one has

wnvolp (Bp(R)) = co(P)R" + c1(P)R" ™ + o(R"!), R — o0

where

CO(P):M’ cl(P):L Z Iog(1—<(ﬁn\71,fo>)-

(n!)2 (n!)2 f EFlags(P)

A\
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Two terms asymptotics

For a facet F € F,_1(P), write F € Fo(P°) for the corresponding vertex.

Theorem (F-Vernicos-Walsh)

For a polytope P C R" with 0 € int(P) one has

wnvolp (Bp(R)) = co(P)R" + c1(P)R" ™ + o(R"!), R — o0

where

CO(P):M’ cl(P):L Z Iog(1—<(ﬁn\71,fo>)-

(n!)2 (n!)2 f EFlags(P)

@ If an unconditional polytope has | Flags(P)| = | Flags(Hn)|, it must have
c1(P) > c1(Hn) (due to known equality cases for finite radius).

A\
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Two terms asymptotics

For a facet F € F,_1(P), write F € Fo(P°) for the corresponding vertex.

Theorem (F-Vernicos-Walsh)

For a polytope P C R" with 0 € int(P) one has
wnvolp (Bp(R)) = co(P)R" + c1(P)R"* + o(R""), R— o0

where

CO(P):M’ cl(P):L Z Iog(1—<(ﬁn\71,fo>)-

(n!)2 (n!)2 f EFlags(P)

@ If an unconditional polytope has | Flags(P)| = | Flags(Hn)|, it must have
c1(P) > c1(Hn) (due to known equality cases for finite radius).
@ Hanner polytopes maximize c;(P) among polytopes with | Flags(P)| = | Flags(Hn)|.

If P is unconditional, and | Flags(P)| = | Flags(Hnh)| = 2"n!, then for every
f € Flags(P), —fo € (rf)n—1.
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Two terms asymptotics

For a facet F € F,_1(P), write F € Fo(P°) for the corresponding vertex.

Theorem (F-Vernicos-Walsh)

For a polytope P C R" with 0 € int(P) one has
wnvolp (Bp(R)) = co(P)R" + c1(P)R"* + o(R""), R— o0

where

CO(P):M’ cl(P):L Z Iog(1—<(ﬁn\71,fo>)-

(n!)2 (n!)2 f EFlags(P)

@ If an unconditional polytope has | Flags(P)| = | Flags(Hn)|, it must have
c1(P) > c1(Hn) (due to known equality cases for finite radius).
@ Hanner polytopes maximize c;(P) among polytopes with | Flags(P)| = | Flags(Hn)|.

If P is unconditional, and | Flags(P)| = | Flags(Hnh)| = 2"n!, then for every
f € Flags(P), —fo € (rf)n—1.

Does not imply uniqueness of Hanner - any (unconditional) 2-level polytope satisfies
this condition.
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The Santalé point

The Santald point sk of K C R" is the unique point sk = g € int(K) such that |K9|
is minimized. One has sk = 0 if and only if O is the center of mass of K°.
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The Santalé point

The Santald point sk of K C R" is the unique point sk = g € int(K) such that |K9|
is minimized. One has sk = 0 if and only if O is the center of mass of K°.

Theorem (F-Vernicos-Walsh)

e For each 0 < r < oo, there is a unique point q = s,(K) € int(K) that minimizes the
Funk volume of Bk(q, r) inside K.
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Strict convexity of f(q) := volk(Bk(q, r)) follows from the strict convexity of
x = |KX].
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The Santalé point

The Santald point sk of K C R" is the unique point sk = g € int(K) such that |K9|
is minimized. One has sk = 0 if and only if O is the center of mass of K°.

Theorem (F-Vernicos-Walsh)

e For each 0 < r < oo, there is a unique point q = s,(K) € int(K) that minimizes the
Funk volume of Bk(q, r) inside K.
e Similarly,

a(P.q) = lim_ R—(n=1) (wn volp (Bp(g, R)) — MR”)

(n1)?

has a unique minimum at sso(P) = limg_ oo Sr(P).
® soo(P) =0 if and only if

Z |F|ags(F)\I?:O.

FEF,—1(P)

Strict convexity of f(q) := volk(Bk(q, r)) follows from the strict convexity of
x = |KX].

Less trivial is showing that f is proper, that is f(q) — oo as ¢ — 9K, without
regularity assumptions on K. We use the projective invariance of the Funk volume to
squeeze infinitely many disjoint Hilbert balls of fixed radius into a ball centered-at 0K.
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Conjecture (Funk-Blaschke-Santald)

Given 0 < r < oo, mingek volk(Bk(q, r)) is uniquely maximized by ellipsoids.
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Conjecture (Funk-Blaschke-Santald)

Given 0 < r < oo, mingek volk(Bk(q, r)) is uniquely maximized by ellipsoids.

y
Motivation: e For r — 0 it is the Blaschke-Santalé inequality.
e For r — o0, it is the centro-affine isoperimetric inequality of Lutwak:
Qn(K,c.m.) < Qn(B").
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Conjecture (Funk-Blaschke-Santald)

Given 0 < r < oo, mingek volk(Bk(q, r)) is uniquely maximized by ellipsoids.

Motivation: e For r — 0 it is the Blaschke-Santald inequality.
e For r — o0, it is the centro-affine isoperimetric inequality of Lutwak:
Qn(K,c.m.) < Qn(B").

Theorem (Berck-Bernig-Vernicos '10, Vernicos-Yang '19)

For a CH1 convex body K and 0 € int(K), the Hilbert ball B{{(R,0) has volume

1

vol (BR(R,0)) ~
n—1

Co(K)el™ VR R - 0.

The centro-projective surface area Co(K) ia uniquely maximized by ellipsoids.
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Given 0 < r < oo, mingek volk(Bk(q, r)) is uniquely maximized by ellipsoids.

Motivation: e For r — 0 it is the Blaschke-Santald inequality.
e For r — o0, it is the centro-affine isoperimetric inequality of Lutwak:
Qn(K,c.m.) < Qn(B").

Theorem (Berck-Bernig-Vernicos '10, Vernicos-Yang '19)

For a CH1 convex body K and 0 € int(K), the Hilbert ball B{{(R,0) has volume

1
n—1

Vol (BK(R,0)) ~ Co(K)el" VR R — oo,

The centro-projective surface area Co(K) ia uniquely maximized by ellipsoids.

The Colbois-Verovic volume entropy conjecture:.

Theorem (Tholozan Duke '17, Vernicos-Walsh Ann. Sci. Ec. Norm. Supér '21)

log volf(B(a,) ) _ 1

In Hilbert geometry, limsup,_, ., =
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Conjecture (Funk-Blaschke-Santald)

Given 0 < r < oo, mingek volk(Bk(q, r)) is uniquely maximized by ellipsoids.

Motivation: e For r — 0 it is the Blaschke-Santald inequality.
e For r — o0, it is the centro-affine isoperimetric inequality of Lutwak:
Qn(K,c.m.) < Qn(B").

Theorem (Berck-Bernig-Vernicos '10, Vernicos-Yang '19)

For a CH1 convex body K and 0 € int(K), the Hilbert ball B{{(R,0) has volume

1
n—1

Vol (BK(R,0)) ~ Co(K)el" VR R — oo,

The centro-projective surface area Co(K) ia uniquely maximized by ellipsoids.

The Colbois-Verovic volume entropy conjecture:.

Theorem (Tholozan Duke '17, Vernicos-Walsh Ann. Sci. Ec. Norm. Supér '21)

log volf(B(a,) ) _ 1

In Hilbert geometry, limsup,_, ., =

The Funk-Blaschke-Santalé conjecture implies and sharpens Colbois-Verovic.
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More upper bound

Theorem (F, jdg '22+)

Among unconditional convex bodies K, ellipsoids uniquely maximize
volk(Bk(r,0)) for any 0 < r < oo.
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More upper bound

Theorem (F, jdg '22+)

Among unconditional convex bodies K, ellipsoids uniquely maximize
volk(Bk(r,0)) for any 0 < r < oo.

Theorem (F-Vernicos-Walsh)

Among m-polygons P C R?, affine images of the regular m-polygon uniquely
maximize c1(P, ss(P)).
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Functional inequalities

Functional Funk-Blaschke-Santalé conjecture

For even ¢ : R” — R, and 0 < A < 1 one has

(2m)"

—(x) = L&)+ (x,£) dxdé <
Lo XS T

with equality only for e~ gaussian.
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For even ¢ : R” — R, and 0 < A < 1 one has

~60)=LOEAE) gy g < (27"
Jore e < 50

with equality only for e~ gaussian.

A\

@ Proved in [F, jdg '22+] for unconditional ¢.

Functional Funk-Mahler conjecture

For convex even ¢ : R” — R U {oco}, and 0 < A < 1 one has

2" 1 !
/ e 4= e > 2 (1og LEAY
. BT

equality attained e.g. by ¢(x) = |xi| + - - + |Xnl-
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Functional Funk-Blaschke-Santalé conjecture

For even ¢ : R” — R, and 0 < A < 1 one has

~60)=LOEAE) gy g < (27"
Jore e < 50

with equality only for e~ gaussian.

A\

@ Proved in [F, jdg '22+] for unconditional ¢.

Functional Funk-Mahler conjecture

For convex even ¢ : R” — R U {oco}, and 0 < A < 1 one has

2" 1 !
/ e 4= e > 2 (1og LEAY
. BT

equality attained e.g. by ¢(x) = |xi| + - - + |Xnl-
@ Proved (FVW) for unconditional ¢ using Fradelizi-Meyer (Positivity '08).
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Wild speculations

Yet another conjecture of Kalai

2
A centrally-symmetric polytope P satisfies | Flags(P)| > %|PHP°\.
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A centrally-symmetric polytope P satisfies | Flags(P)| > %|P|\P°\.

Aiming for a finite radius version, we may boldly propose

A reverse Bishop-Gromov-type conjecture (FVW)

Let 0 < r < R < oo, and K C R” a centrally-symmetric convex body. Then

volk(Bk(R)) S voly, (Bu, (R))
VO|K(BK(I’)) - VOIH,,(BH,,(")).
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Yet another conjecture of Kalai

2
A centrally-symmetric polytope P satisfies | Flags(P)| > %|P|\P°\.

Aiming for a finite radius version, we may boldly propose

A reverse Bishop-Gromov-type conjecture (FVW)

Let 0 < r < R < oo, and K C R” a centrally-symmetric convex body. Then

volk(Bk(R)) S voly, (Bu, (R))
VO|K(BK(I’)) - VOIH,,(BH,,(")).

Kalai's conjecture follows when r — 0, R — oo.
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Direct Bishop-Gromov is false

Bishop-Gromov theorem

Let 0 < r < R < 0o, M complete Riemannian with Ricy > (n— 1)K. Let Mk
be the model space of that curvature. Then

volu(Bu(p, R)) _ volu (Buy (pu, R))
volw(Bum(p,r)) ~ voluy (B (pm,r))
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be the model space of that curvature. Then
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The direct analogue of Bishop-Gromov is provably false:

A Bishop-Gromov-type FALSE conjecture

Let 0 < r < R < 00, K C R" a centrally-symmetric convex body, E, an

ellipsoid. Then
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This is false: Taking R, r — 0, this implies the inequality
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shown to be false by Klartag ('17) even for unconditional convex bodies.
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The End

Thanks for listening!
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Direct Bishop-Gromov is false

The other direction of the conjecture is provably false:

A Bishop-Gromov-type FALSE conjecture

Let 0 < r < R < 00, K C R" a centrally-symmetric convex body, E, an
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Conclusion
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Direct Bishop-Gromov is false

The other direction of the conjecture is provably false:

A Bishop-Gromov-type FALSE conjecture

Let 0 < r < R < 00, K C R" a centrally-symmetric convex body, E, an

ellipsoid. Then
volk(Bx(R)) _ vole,(Be,(R))
volk(Bk(r)) — volg,(Be,(r))

This is false: Taking R, r — 0, this implies the inequality
[ @< oIk
Kxko ~(n+2) ’

shown to be false by Klartag ('17) even for unconditional convex bodies.

The Reverse Bishop-Gromov-type conjecture would imply
1

2 n—3 °
| e > oA KK

Can you prove or disprove it?
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