# Funk geometry of polytopes and their flags joint work with C. Vernicos and C. Walsh 

Dmitry Faifman

Tel Aviv University

Convex Geometry - Analytic Aspects
Cortona, 26-30 June, 2023

## Funk and Hilbert geometries

Assume $K \subset \mathbb{R}^{n}$ is a convex body with $\operatorname{int}(K) \neq \emptyset$.
Definition
The Funk metric on $\operatorname{int}(K)$ is the non-reversible Finsler metric whose unit tangent ball $B_{x} K$ is $K$, with $x$ at the origin. Equivalently, $\left.\phi_{K}^{F}\right|_{x}(v)=\|v\|_{K}$

It is an affine-invariant construction. The distance is $d_{k}^{F}(x, y)=\log \frac{|x z|}{|y z|}$

## Definition

The Hilbert metric is


Like the cross ratio, the Hilbert metric is projectively invariant.

- Both are examples of "projective metrics" : straight segments are geodesics.
- Example. The Funk metric in the unit Euclidean ball is
$d_{F}(x, y)=d_{H}(x, y)+f(y)-f(x)$ where $d_{H}$ is the Beltrami-Klein hyperbolic metric (also the Hilbert metric in the ball)


## Funk and Hilbert geometries

Assume $K \subset \mathbb{R}^{n}$ is a convex body with $\operatorname{int}(K) \neq \emptyset$.

## Definition

The Funk metric on $\operatorname{int}(K)$ is the non-reversible Finsler metric whose unit tangent ball $B_{x} K$ is $K$, with $x$ at the origin. Equivalently, $\left.\phi_{K}^{F}\right|_{x}(v)=\|v\|_{K-x}$.

```
It is an affine-invariant construction. The distance is }\mp@subsup{d}{K}{F}(x,y)=\operatorname{log}\frac{|xz}{|yz
```


## Definition

The Hilbert metric is

Like the cross ratio, the Hilbert metric is projectively invariant.

- Both are examples of "projective metrics": straight segments are geodesics.
- Example. The Funk metric in the unit Euclidean ball is
$d_{F}(x, y)=d_{H}(x, y)+f(y)-f(x)$ where $d_{H}$ is the Beltrami-Klein hyperbolic



## Funk and Hilbert geometries

Assume $K \subset \mathbb{R}^{n}$ is a convex body with $\operatorname{int}(K) \neq \emptyset$.

## Definition

The Funk metric on $\operatorname{int}(K)$ is the non-reversible Finsler metric whose unit tangent ball $B_{x} K$ is $K$, with $x$ at the origin. Equivalently, $\left.\phi_{K}^{F}\right|_{x}(v)=\|v\|_{K-x}$.

It is an affine-invariant construction. The distance is $d_{K}^{F}(x, y)=\log \frac{|x z|}{|y z|}$.

## Definition

The Hilbert metric is

Like the cross ratio, the Hilbert metric is projectively invariant.

- Both are examples of "projective metrics" : straight segments are geodesics
- Example. The Funk metric in the unit Euclidean ball is
$d_{F}(x, y)=d_{H}(x, y)+f(y)-f(x)$ where $d_{H}$ is the Beltrami-Klein hyperbolic
metric (also the Hilbert metric in the ball), and $f(x)$


## Funk and Hilbert geometries

Assume $K \subset \mathbb{R}^{n}$ is a convex body with $\operatorname{int}(K) \neq \emptyset$.

## Definition

The Funk metric on $\operatorname{int}(K)$ is the non-reversible Finsler metric whose unit tangent ball $B_{x} K$ is $K$, with $x$ at the origin. Equivalently, $\left.\phi_{K}^{F}\right|_{x}(v)=\|v\|_{K-x}$.

It is an affine-invariant construction. The distance is $d_{K}^{F}(x, y)=\log \frac{|x z|}{|y z|}$.

## Definition

The Hilbert metric is

$$
d_{K}^{H}(x, y)=\frac{1}{2}\left(d_{K}^{F}(x, y)+d_{K}^{F}(y, x)\right)=\frac{1}{2} \log \frac{|x z||w y|}{|y z||w x|} .
$$

Like the cross ratio, the Hilbert metric is projectively invariant.

[^0]
## Funk and Hilbert geometries

Assume $K \subset \mathbb{R}^{n}$ is a convex body with $\operatorname{int}(K) \neq \emptyset$.

## Definition

The Funk metric on $\operatorname{int}(K)$ is the non-reversible Finsler metric whose unit tangent ball $B_{x} K$ is $K$, with $x$ at the origin. Equivalently, $\left.\phi_{K}^{F}\right|_{x}(v)=\|v\|_{K-x}$.

It is an affine-invariant construction. The distance is $d_{K}^{F}(x, y)=\log \frac{|x z|}{|y z|}$.

## Definition

The Hilbert metric is

$$
d_{K}^{H}(x, y)=\frac{1}{2}\left(d_{K}^{F}(x, y)+d_{K}^{F}(y, x)\right)=\frac{1}{2} \log \frac{|x z||w y|}{|y z||w x|} .
$$

Like the cross ratio, the Hilbert metric is projectively invariant.

- Both are examples of "projective metrics": straight segments are geodesics.
- Example. The Funk metric in the unit Euclidean ball is
$d_{F}(x, y)=d_{H}(x, y)+f(y)-f(x)$ where $d_{H}$ is the Beltrami-Klein hyperbolic
metric (also the Hilbert metric in the ball), and $f(x)$


## Funk and Hilbert geometries

Assume $K \subset \mathbb{R}^{n}$ is a convex body with $\operatorname{int}(K) \neq \emptyset$.

## Definition

The Funk metric on $\operatorname{int}(K)$ is the non-reversible Finsler metric whose unit tangent ball $B_{x} K$ is $K$, with $x$ at the origin. Equivalently, $\left.\phi_{K}^{F}\right|_{x}(v)=\|v\|_{K-x}$.

It is an affine-invariant construction. The distance is $d_{K}^{F}(x, y)=\log \frac{|x z|}{|y z|}$.

## Definition

The Hilbert metric is

$$
d_{K}^{H}(x, y)=\frac{1}{2}\left(d_{K}^{F}(x, y)+d_{K}^{F}(y, x)\right)=\frac{1}{2} \log \frac{|x z||w y|}{|y z||w x|} .
$$

Like the cross ratio, the Hilbert metric is projectively invariant.

- Both are examples of "projective metrics": straight segments are geodesics.
- Example. The Funk metric in the unit Euclidean ball is $d_{F}(x, y)=d_{H}(x, y)+f(y)-f(x)$ where $d_{H}$ is the Beltrami-Klein hyperbolic metric (also the Hilbert metric in the ball), and $f(x)=-\frac{1}{2} \log \left(1-|x|^{2}\right)$.


## Volume in Funk geometry

The outward ball in Funk metric is

$$
B_{K}^{F}(q, r)=\left\{x: d_{K}^{F}(q, x) \leq r\right\}=\left(1-e^{-r}\right)(K-q)+q .
$$

## Defintion

The Holmes-Thompson volume of $A \subset \operatorname{int}(K)$ is vol ${ }_{K}(A)=\omega_{n}^{-1} \int_{A}\left|K^{x}\right| d x$, where
$K^{\times} \subset\left(\mathbb{R}^{n}\right)^{*}$ is the polar body with respect to $x$.

We will consider the volume of Funk balls:


## Basic properties

- Multiplicativity. Assume $K \subset \mathbb{R}^{a}, L \subset \mathbb{R}^{b}$. Then $(a+b)!\omega_{a+b} \operatorname{vol}_{K \times L}\left(B_{K \times L}((p, q), r)\right)=a!\omega_{a} \operatorname{vol}_{K}\left(B_{K}(p, r)\right) \cdot b \omega_{b} \operatorname{vol}_{L}\left(B_{L}(q, r)\right)$
- Duality. Assume $0 \in \operatorname{int}(K)$. Then vol $K_{K}\left(B_{K}(0, r)\right)=\operatorname{vol}_{K^{\circ}}\left(B_{K^{\circ}}(0, r)\right)$.

Corollary. If $H_{n}$ is a centered $n$-dimensional Hanner polytope, and $\lambda=1-e^{-r}$,


## Volume in Funk geometry

The outward ball in Funk metric is

$$
B_{K}^{F}(q, r)=\left\{x: d_{K}^{F}(q, x) \leq r\right\}=\left(1-e^{-r}\right)(K-q)+q .
$$

## Defintion

The Holmes-Thompson volume of $A \subset \operatorname{int}(K)$ is $\operatorname{vol}_{K}(A)=\omega_{n}^{-1} \int_{A}\left|K^{x}\right| d x$, where $K^{\times} \subset\left(\mathbb{R}^{n}\right)^{*}$ is the polar body with respect to $x$.

We will consider the volume of Funk balls


## Basic properties

- Multiplicativity. Assume $K \subset \mathbb{R}^{a}, L \subset \mathbb{R}^{b}$. Then $(a+b)!\omega_{a+b} \operatorname{vol}_{K \times L}\left(B_{K \times L}((p, q), r)\right)=a!\omega_{a} \operatorname{vol}_{K}\left(B_{K}(p, r)\right) \cdot b!\omega_{b} \operatorname{vol}_{L}\left(B_{L}(q, r)\right)$

Corollary. If $H_{n}$ is a centered $n$-dimensional Hanner polytope, and $\lambda=1-e^{-r}$,



Dmitry Faifman

## Volume in Funk geometry

The outward ball in Funk metric is

$$
B_{K}^{F}(q, r)=\left\{x: d_{K}^{F}(q, x) \leq r\right\}=\left(1-e^{-r}\right)(K-q)+q .
$$

## Defintion

The Holmes-Thompson volume of $A \subset \operatorname{int}(K)$ is $\operatorname{vol}_{K}(A)=\omega_{n}^{-1} \int_{A}\left|K^{x}\right| d x$, where $K^{x} \subset\left(\mathbb{R}^{n}\right)^{*}$ is the polar body with respect to $x$.

We will consider the volume of Funk balls:

$$
\operatorname{vol}_{K}\left(B_{K}(0, r)\right)=\omega_{n}^{-1} \int_{\left(1-e^{-r}\right) K}\left|K^{x}\right| d x .
$$

## Basic properties

- Multiplicativity. Assume $K \subset \mathbb{R}^{a}, L \subset \mathbb{R}^{b}$. Then
$(a+b)!\omega_{a+b} \operatorname{vol}_{K \times L}\left(B_{K \times L}((p, q), r)\right)=a!\omega_{a} \operatorname{vol}_{K}\left(B_{K}(p, r)\right) \cdot b \omega_{b} \operatorname{vol}_{L}\left(B_{L}(q, r)\right)$
- Duality. Assume $0 \in \operatorname{int}(K)$. Then vol $K_{K}\left(B_{K}(0, r)\right)=\operatorname{vol}_{K^{\circ}}\left(B_{K^{\circ}}(0, r)\right)$.

Corollary. If $H_{n}$ is a centered $n$-dimensional Hanner polytope, and $\lambda=1-e^{-r}$,

## Volume in Funk geometry

The outward ball in Funk metric is

$$
B_{K}^{F}(q, r)=\left\{x: d_{K}^{F}(q, x) \leq r\right\}=\left(1-e^{-r}\right)(K-q)+q .
$$

## Defintion

The Holmes-Thompson volume of $A \subset \operatorname{int}(K)$ is $\operatorname{vol}_{K}(A)=\omega_{n}^{-1} \int_{A}\left|K^{x}\right| d x$, where $K^{x} \subset\left(\mathbb{R}^{n}\right)^{*}$ is the polar body with respect to $x$.

We will consider the volume of Funk balls:

$$
\operatorname{vol}_{K}\left(B_{K}(0, r)\right)=\omega_{n}^{-1} \int_{\left(1-e^{-r}\right) K}\left|K^{x}\right| d x
$$

Basic properties:

- Multiplicativity. Assume $K \subset \mathbb{R}^{a}, L \subset \mathbb{R}^{b}$. Then

$$
(a+b)!\omega_{a+b} \operatorname{vol}_{K \times L}\left(B_{K \times L}((p, q), r)\right)=a!\omega_{a} \operatorname{vol}_{K}\left(B_{K}(p, r)\right) \cdot b!\omega_{b} \operatorname{vol}_{L}\left(B_{L}(q, r)\right)
$$

- Duality. Assume $0 \in \operatorname{int}(K)$. Then $\operatorname{vol}_{K}\left(B_{K}(0, r)\right)=\operatorname{vol}_{K^{\circ}}\left(B_{K^{\circ}}(0, r)\right)$.

Corollary. If $H_{n}$ is a centered $n$-dimensional Hanner polytope, and $\lambda=1-e^{-r}$,

## Volume in Funk geometry

The outward ball in Funk metric is

$$
B_{K}^{F}(q, r)=\left\{x: d_{K}^{F}(q, x) \leq r\right\}=\left(1-e^{-r}\right)(K-q)+q
$$

## Defintion

The Holmes-Thompson volume of $A \subset \operatorname{int}(K)$ is vol ${ }_{K}(A)=\omega_{n}^{-1} \int_{A}\left|K^{x}\right| d x$, where $K^{x} \subset\left(\mathbb{R}^{n}\right)^{*}$ is the polar body with respect to $x$.

We will consider the volume of Funk balls:

$$
\operatorname{vol}_{K}\left(B_{K}(0, r)\right)=\omega_{n}^{-1} \int_{\left(1-e^{-r}\right) K}\left|K^{x}\right| d x
$$

Basic properties:

- Multiplicativity. Assume $K \subset \mathbb{R}^{a}, L \subset \mathbb{R}^{b}$. Then

$$
(a+b)!\omega_{a+b} \operatorname{vol}_{K \times L}\left(B_{K \times L}((p, q), r)\right)=a!\omega_{a} \operatorname{vol}_{K}\left(B_{K}(p, r)\right) \cdot b!\omega_{b} \operatorname{vol}_{L}\left(B_{L}(q, r)\right)
$$

- Duality. Assume $0 \in \operatorname{int}(K)$. Then vol $K_{K}\left(B_{K}(0, r)\right)=\operatorname{vol}_{K^{\circ}}\left(B_{K^{\circ}}(0, r)\right)$.

Corollary. If $H_{n}$ is a centered $n$-dimensional Hanner polytope, and $\lambda=1-e^{-}$

## Volume in Funk geometry

The outward ball in Funk metric is

$$
B_{K}^{F}(q, r)=\left\{x: d_{K}^{F}(q, x) \leq r\right\}=\left(1-e^{-r}\right)(K-q)+q
$$

## Defintion

The Holmes-Thompson volume of $A \subset \operatorname{int}(K)$ is vol ${ }_{K}(A)=\omega_{n}^{-1} \int_{A}\left|K^{x}\right| d x$, where $K^{x} \subset\left(\mathbb{R}^{n}\right)^{*}$ is the polar body with respect to $x$.

We will consider the volume of Funk balls:

$$
\operatorname{vol}_{K}\left(B_{K}(0, r)\right)=\omega_{n}^{-1} \int_{\left(1-e^{-r}\right) K}\left|K^{x}\right| d x
$$

Basic properties:

- Multiplicativity. Assume $K \subset \mathbb{R}^{a}, L \subset \mathbb{R}^{b}$. Then

$$
(a+b)!\omega_{a+b} \operatorname{vol}_{K \times L}\left(B_{K \times L}((p, q), r)\right)=a!\omega_{a} \operatorname{vol}_{K}\left(B_{K}(p, r)\right) \cdot b!\omega_{b} \operatorname{vol}_{L}\left(B_{L}(q, r)\right)
$$

- Duality. Assume $0 \in \operatorname{int}(K)$. Then $\operatorname{vol}_{K}\left(B_{K}(0, r)\right)=\operatorname{vol}_{K} \circ\left(B_{K} \circ(0, r)\right)$.

Corollary. If $H_{n}$ is a centered $n$-dimensional Hanner polytope, and $\lambda=1-e^{-r}$,

$$
\operatorname{vol}_{H_{n}}\left(B_{H_{n}}(0, r)\right)=\omega_{n}^{-1} \int_{\lambda H_{n}}\left|H_{n}^{x}\right| d x=\frac{2^{n}}{n!\omega_{n}}\left(\log \frac{1+\lambda}{1-\lambda}\right)^{n}
$$

## Projective invariance

## Theorem (F)

Let $g: \mathbb{R}^{P} \rightarrow \mathbb{R}^{p} \mathbb{P}^{n}$ be a collineation (fractional linear map), and assume $g(K) \subset \mathbb{R}^{n}$. Let $\phi_{K}$ be the Funk Finsler norm on $\operatorname{int}(K)$. Then $g^{*} \phi_{g K}-\phi_{K} \in C(T K)$ is an exact 1 -form.

## Gorollary

Funk volume is projectively invariant: vol $K(A)=\operatorname{vol}_{g K}(g A)$

Furthermore, the Funk metric exhibits projective duality.
For $\left.K \subset \mathbb{R P}^{n}, K^{V}=\left\{\xi \in\left(\mathbb{R}^{P}\right)^{n}\right)^{V}: \xi \cap \operatorname{int}(K)=\emptyset\right\}$ is its polar convex body
Theorem (F)
If $K \subset L$ are two convex bodies in

Dmitry Faifman
Funk geometry of polytopes and their flags

## Projective invariance

## Theorem (F)

Let $g: \mathbb{R}^{P} \rightarrow \mathbb{R}^{p} \mathbb{P}^{n}$ be a collineation (fractional linear map), and assume $g(K) \subset \mathbb{R}^{n}$. Let $\phi_{K}$ be the Funk Finsler norm on $\operatorname{int}(K)$. Then $g^{*} \phi_{g K}-\phi_{K} \in C(T K)$ is an exact 1 -form.

## Corollary

Funk volume is projectively invariant: $\operatorname{vol}_{K}(A)=\operatorname{vol}_{g K}(g A)$.
Furthermore, the Funk metric exhibits projective duality.
For $K \subset \mathbb{R P}^{n}, K^{\vee}=\left\{\xi \in\left(\mathbb{R}^{n}\right)^{\vee}: \xi \cap \operatorname{int}(K)=\emptyset\right\}$ is its polar convex body

## Theorem (F)

## Projective invariance

## Theorem (F)

Let $g: \mathbb{R P}^{n} \rightarrow \mathbb{R P}^{n}$ be a collineation (fractional linear map), and assume $g(K) \subset \mathbb{R}^{n}$. Let $\phi_{K}$ be the Funk Finsler norm on $\operatorname{int}(K)$.
Then $g^{*} \phi_{g K}-\phi_{K} \in C(T K)$ is an exact 1 -form.

## Corollary

Funk volume is projectively invariant: $\operatorname{vol}_{K}(A)=\operatorname{vol}_{g K}(g A)$.
Furthermore, the Funk metric exhibits projective duality.
For $K \subset \mathbb{R P}^{n}, K^{\vee}=\left\{\xi \in\left(\mathbb{R} \mathbb{P}^{n}\right)^{\vee}: \xi \cap \operatorname{int}(K)=\emptyset\right\}$ is its polar convex body.


## Projective invariance

## Theorem (F)

Let $g: \mathbb{R P}^{n} \rightarrow \mathbb{R} \mathbb{P}^{n}$ be a collineation (fractional linear map), and assume $g(K) \subset \mathbb{R}^{n}$. Let $\phi_{K}$ be the Funk Finsler norm on $\operatorname{int}(K)$.
Then $g^{*} \phi_{g K}-\phi_{K} \in C(T K)$ is an exact 1 -form.

## Corollary

Funk volume is projectively invariant: vol $_{K}(A)=\operatorname{vol}_{g K}(g A)$.

Furthermore, the Funk metric exhibits projective duality.
For $K \subset \mathbb{R} \mathbb{P}^{n}, K^{\vee}=\left\{\xi \in\left(\mathbb{R} \mathbb{P}^{n}\right)^{\vee}: \xi \cap \operatorname{int}(K)=\emptyset\right\}$ is its polar convex body.

## Theorem (F)

If $K \subset L$ are two convex bodies in $\mathbb{R}^{n}$, then $\operatorname{vol}_{L}(K)=\operatorname{vol}_{K^{\vee}}\left(L^{\vee}\right)$.

## Asymptotics of volume

Asymptotics of volumes of metric balls:

- As $r \rightarrow 0, \operatorname{vol}\left(B_{K}(0, r)\right) \sim \omega_{n}^{-1}\left|K \times K^{\circ}\right| r^{n}$.

As $r \rightarrow \infty$, we have
Theorem (Berck-Bernig-Vernicos, adjusted to Funk metric)
When $K \subset \mathbb{R}^{n}$ is $C^{2}$ and stricily convex, $\operatorname{vol}^{\prime}\left(B_{K}(q, r)\right) \sim c_{n} \Omega_{n}(K, q) e$
Here $\Omega_{n}(K, q)=\int_{\partial K} \frac{K_{X}^{1 / 2}}{\left(x-q, \nu_{x}\right)(n-1) / 2} d \mathcal{H}^{n-1}(x)$ is the centro-affine area of $K$ with center at $q$

Remark. Berck-Bernig-Vernicos obtain the result in the Hilbert metric setting under the weaker $C^{1,1}$ assumption and no strict convexity.

## Asymptotics of volume

## Asymptotics of volumes of metric balls:

- As $r \rightarrow 0, \operatorname{vol}\left(B_{K}(0, r)\right) \sim \omega_{n}^{-1}\left|K \times K^{\circ}\right| r^{n}$.
- As $r \rightarrow \infty$, we have


## Theorem (Berck-Bernig-Vernicos, adjusted to Funk metric)

When $K \subset \mathbb{R}^{n}$ is $C^{2}$ and strictly convex, $\operatorname{vol}\left(B_{K}(q, r)\right) \sim c_{n} \Omega_{n}(K, q) e^{\frac{n-1}{2} r}$.

with center at $q$
Remark. Berck-Bernig-Vernicos obtain the result in the Hilbert metric setting under the weaker $C^{1,1}$ assumption and no strict convexity.

## Asymptotics of volume

Asymptotics of volumes of metric balls:

- As $r \rightarrow 0, \operatorname{vol}\left(B_{K}(0, r)\right) \sim \omega_{n}^{-1}\left|K \times K^{\circ}\right| r^{n}$.
- As $r \rightarrow \infty$, we have


## Theorem (Berck-Bernig-Vernicos, adjusted to Funk metric)

When $K \subset \mathbb{R}^{n}$ is $C^{2}$ and strictly convex, $\operatorname{vol}\left(B_{K}(q, r)\right) \sim c_{n} \Omega_{n}(K, q) e^{\frac{n-1}{2} r}$.
Here $\Omega_{n}(K, q)=\int_{\partial K} \frac{k_{x}^{1 / 2}}{\left\langle x-q, \nu_{x}\right\rangle^{(n-1) / 2}} d \mathcal{H}^{n-1}(x)$ is the centro-affine area of $K$ with center at $q$.

Remark. Berck-Bernig-Vernicos obtain the result in the Hilbert metric setting under the weaker $C^{1,1}$ assumption and no strict convexity.

## Asymptotics of volume

Asymptotics of volumes of metric balls:

- As $r \rightarrow 0, \operatorname{vol}\left(B_{K}(0, r)\right) \sim \omega_{n}^{-1}\left|K \times K^{\circ}\right| r^{n}$.
- As $r \rightarrow \infty$, we have


## Theorem (Berck-Bernig-Vernicos, adjusted to Funk metric)

When $K \subset \mathbb{R}^{n}$ is $C^{2}$ and strictly convex, $\operatorname{vol}\left(B_{K}(q, r)\right) \sim c_{n} \Omega_{n}(K, q) e^{\frac{n-1}{2} r}$.
Here $\Omega_{n}(K, q)=\int_{\partial K} \frac{k_{x}^{1 / 2}}{\left\langle x-q, \nu_{x}\right\rangle^{(n-1) / 2}} d \mathcal{H}^{n-1}(x)$ is the centro-affine area of $K$ with center at $q$.

Remark. Berck-Bernig-Vernicos obtain the result in the Hilbert metric setting under the weaker $C^{1,1}$ assumption and no strict convexity.

## The leading coefficient

A (full) flag of $P$ is a chain $f=\left(\emptyset=f_{-1} \subset f_{0} \subset f_{1} \subset \cdots \subset f_{n-1} \subset f_{n}=P\right)$, where $f_{j} \in \mathcal{F}_{j}(P)$ is a $j$-dimensional face of $P$.

## Theorem (Vernicos-Walsh '18)

In Hilbert geometry, if $P \subset \mathbb{R}^{n}$ is a convex polytope then

Theorem (F-Vernicos-Walsh)
If $P \subset \mathbb{R}^{n}$ is a convex polytope, then

The flag number $\mid$ Flags $(P) \mid$ of $P$ is a combinatorial analogue of centro-affine surface area.

Theorem (Schutt 91 )
If $P \subset \mathbb{R}^{n}$ is a convex polytope, and $P_{\delta}$ its floating body, then

## The leading coefficient

A (full) flag of $P$ is a chain $f=\left(\emptyset=f_{-1} \subset f_{0} \subset f_{1} \subset \cdots \subset f_{n-1} \subset f_{n}=P\right)$, where $f_{j} \in \mathcal{F}_{j}(P)$ is a $j$-dimensional face of $P$.

## Theorem (Vernicos-Walsh '18)

In Hilbert geometry, if $P \subset \mathbb{R}^{n}$ is a convex polytope then

$$
\operatorname{vol}_{P}^{H}\left(B_{P}^{H}(q, r)\right)=c_{n}|\operatorname{Flags}(P)| r^{n}+o\left(r^{n}\right), \quad r \rightarrow \infty .
$$

Theorem (F-Vernicos-Walsh)
If $P \subset \mathbb{R}^{n}$ is a convex polytope, then

The flag number $\mid$ Flags $(P) \mid$ of $P$ is a combinatorial analogue of centro-affine surface area.

Theoren (Schutt '91)
If $P \subset \mathbb{R}^{n}$ is a convex polytope, and $P_{\delta}$ its floating body, then

## The leading coefficient

A (full) flag of $P$ is a chain $f=\left(\emptyset=f_{-1} \subset f_{0} \subset f_{1} \subset \cdots \subset f_{n-1} \subset f_{n}=P\right)$, where $f_{j} \in \mathcal{F}_{j}(P)$ is a $j$-dimensional face of $P$.

## Theorem (Vernicos-Walsh '18)

In Hilbert geometry, if $P \subset \mathbb{R}^{n}$ is a convex polytope then

$$
\operatorname{vol}_{P}^{H}\left(B_{P}^{H}(q, r)\right)=c_{n}|\operatorname{Flags}(P)| r^{n}+o\left(r^{n}\right), \quad r \rightarrow \infty .
$$

## Theorem (F-Vernicos-Walsh)

If $P \subset \mathbb{R}^{n}$ is a convex polytope, then

$$
\operatorname{vol}_{P}^{F}\left(B_{P}^{F}(q, r)\right)=\frac{1}{\omega_{n}(n!)^{2}}|\operatorname{Flags}(P)| r^{n}+o\left(r^{n}\right), \quad r \rightarrow \infty
$$

The flag number $|\operatorname{Flags}(P)|$ of $P$ is a combinatorial analogue of centro-affine surface area.

Theorem (Schütt '91)
If $P \subset \mathbb{R}^{n}$ is a convex polytope, and $P_{\delta}$ its floating body, then

## The leading coefficient

A (full) flag of $P$ is a chain $f=\left(\emptyset=f_{-1} \subset f_{0} \subset f_{1} \subset \cdots \subset f_{n-1} \subset f_{n}=P\right)$, where $f_{j} \in \mathcal{F}_{j}(P)$ is a $j$-dimensional face of $P$.

## Theorem (Vernicos-Walsh '18)

In Hilbert geometry, if $P \subset \mathbb{R}^{n}$ is a convex polytope then

$$
\operatorname{vol}_{P}^{H}\left(B_{P}^{H}(q, r)\right)=c_{n}|\operatorname{Flags}(P)| r^{n}+o\left(r^{n}\right), \quad r \rightarrow \infty .
$$

## Theorem (F-Vernicos-Walsh)

If $P \subset \mathbb{R}^{n}$ is a convex polytope, then

$$
\operatorname{vol}_{P}^{F}\left(B_{P}^{F}(q, r)\right)=\frac{1}{\omega_{n}(n!)^{2}}|\operatorname{Flags}(P)| r^{n}+o\left(r^{n}\right), \quad r \rightarrow \infty
$$

The flag number $|\operatorname{Flags}(P)|$ of $P$ is a combinatorial analogue of centro-affine surface area.

## Theorem (Schütt '91)

If $P \subset \mathbb{R}^{n}$ is a convex polytope, and $P_{\delta}$ its floating body, then

$$
\operatorname{vol}_{n}(P)-\operatorname{vol}_{n}\left(P_{\delta}\right) \sim \frac{1}{n!n^{n-1}}|\operatorname{Flags}(P)| \delta\left(\log \frac{1}{\delta}\right)^{n-1}, \quad \delta \rightarrow 0^{+}
$$

## The Funk-Mahler conjecture

## Conjecture (FVW)

For any $0<r<\infty, M_{r}(K, q):=\omega_{n} \operatorname{vol}_{K}\left(B_{K}(q, r)\right)$ is minimized:

- By centered simplices in general.
- By centered Hanner polytopes among centrally-symmetric convex bodies $K$.

```
- When r 0, this becomes Mahler's conjecture
- When r }->\infty\mathrm{ and K=P a polytope, }\mp@subsup{r}{}{-n}\mp@subsup{M}{r}{}(P,q)->\mp@subsup{c}{n}{}|Flags(P)
- Among all convex polytopes P, 星ags(P)| is trivially minimized by simplices
```


## Flag Conjecture (Kalai '89)

```
For centrally-symmetric \(P\), \(|P l a g s(P)|>2^{n} n!\), equality for Hanner polytopes
```

Related

```
3"}\mathrm{ Conjecture (Kalai 89)
Among centrally-symmetric polytopes, the total face number
F
```

Dmitry Faifman
Funk geometry of polytopes and their flags

## The Funk-Mahler conjecture

## Conjecture (FVW)

For any $0<r<\infty, M_{r}(K, q):=\omega_{n} \operatorname{vol}_{K}\left(B_{K}(q, r)\right)$ is minimized:

- By centered simplices in general.
- By centered Hanner polytopes among centrally-symmetric convex bodies $K$.
- When $r \rightarrow 0$, this becomes Mahler's conjecture.
- When $r \rightarrow \infty$ and $K=P$ a polytope, $r^{-n} M_{r}(P, q) \rightarrow c_{n}|\operatorname{Flags}(P)|$
- Among all convex polytopes $P,|F \operatorname{lags}(P)|$ is trivially minimized by simplices


## Flag Conjecture (Kalai '89)

For centrally-symmetric $P, \mid$ Flags $(P) \mid \geq 2^{n} n!$, equality for Hanner polytopes

Related

```
3"'Conjecture (Kalai 89)
Among centrally-symmetric polytopes, the total face number
F
```

Dmitry Faifman
Funk geometry of polytopes and their flags

## The Funk-Mahler conjecture

## Conjecture (FVW)

For any $0<r<\infty, M_{r}(K, q):=\omega_{n} \operatorname{vol}_{K}\left(B_{K}(q, r)\right)$ is minimized:

- By centered simplices in general.
- By centered Hanner polytopes among centrally-symmetric convex bodies $K$.
- When $r \rightarrow 0$, this becomes Mahler's conjecture.
- When $r \rightarrow \infty$ and $K=P$ a polytope, $r^{-n} M_{r}(P, q) \rightarrow c_{n}|\operatorname{Flags}(P)|$.
- Among all convex polytopes $P,|F l a g s(P)|$ is trivially minimized by simplices


## Flag Conjecture (Kalai '89)

For centrally-symmetric $P$, $\mid$ Plags $(P) \mid>2^{n} n!$, equality for Hanner polytopes

Related

```
3" Conjecture (Kalai 89)
Among centrally-symmetric polytopes, the total face number
\(\mathcal{F}_{0}(P)\left|+\cdots+\left|\mathcal{F}_{n}(P)\right| \geq 3^{n}\right.\). Equality is attained by Hanner polytopes
```


## The Funk-Mahler conjecture

## Conjecture (FVW)

For any $0<r<\infty, M_{r}(K, q):=\omega_{n} \operatorname{vol}_{K}\left(B_{K}(q, r)\right)$ is minimized:

- By centered simplices in general.
- By centered Hanner polytopes among centrally-symmetric convex bodies $K$.
- When $r \rightarrow 0$, this becomes Mahler's conjecture.
- When $r \rightarrow \infty$ and $K=P$ a polytope, $r^{-n} M_{r}(P, q) \rightarrow c_{n} \mid$ Flags $(P) \mid$.
- Among all convex polytopes $P,|\operatorname{Flags}(P)|$ is trivially minimized by simplices.


## Flag Conjecture (Kalai '89)

For centrally-symmetric $P$, $\mid$ Flags $(P) \mid>2^{n} n!$, equality for Hanner polytopes

Related

## The Funk-Mahler conjecture

## Conjecture (FVW)

For any $0<r<\infty, M_{r}(K, q):=\omega_{n} \operatorname{vol}_{K}\left(B_{K}(q, r)\right)$ is minimized:

- By centered simplices in general.
- By centered Hanner polytopes among centrally-symmetric convex bodies $K$.
- When $r \rightarrow 0$, this becomes Mahler's conjecture.
- When $r \rightarrow \infty$ and $K=P$ a polytope, $r^{-n} M_{r}(P, q) \rightarrow c_{n}|\operatorname{Flags}(P)|$.
- Among all convex polytopes $P,|\operatorname{Flags}(P)|$ is trivially minimized by simplices.


## Flag Conjecture (Kalai '89)

For centrally-symmetric $P, \mid$ Flags $(P) \mid \geq 2^{n} n!$, equality for Hanner polytopes.

## Related:

## The Funk-Mahler conjecture

## Conjecture (FVW)

For any $0<r<\infty, M_{r}(K, q):=\omega_{n} \operatorname{vol}_{K}\left(B_{K}(q, r)\right)$ is minimized:

- By centered simplices in general.
- By centered Hanner polytopes among centrally-symmetric convex bodies $K$.
- When $r \rightarrow 0$, this becomes Mahler's conjecture.
- When $r \rightarrow \infty$ and $K=P$ a polytope, $r^{-n} M_{r}(P, q) \rightarrow c_{n} \mid$ Flags $(P) \mid$.
- Among all convex polytopes $P,|\operatorname{Flags}(P)|$ is trivially minimized by simplices.


## Flag Conjecture (Kalai '89)

For centrally-symmetric $P, \mid$ Flags $(P) \mid \geq 2^{n} n!$, equality for Hanner polytopes.
Related:

## $3^{d}$ Conjecture (Kalai '89)

Among centrally-symmetric polytopes, the total face number $\left|\mathcal{F}_{0}(P)\right|+\cdots+\left|\mathcal{F}_{n}(P)\right| \geq 3^{n}$. Equality is attained by Hanner polytopes.

## Lower bounds

The Mahler conjecture is known up to dimension 2 in general (Mahler). The centrally-symmetric Mahler is known in dimension 3 (Iriyeh-Shibata 2020), for unconditional convex bodies (Saint Raymond '81), zonoids (Reisner '86), some other settings.

```
Theorem (F-Vernicos-Walsh)
For any 0<r<\infty, Hanner polytopes uniquely minimize volk}(\mp@subsup{B}{k}{}(r,0)) amon
all unconditional convex bodies K
```

Taking $r \rightarrow \infty$ we make some progress towards Kalai's flag conjecture
Corollary (F-Vernicos-Walsh)
For unconditional polytopes $P$, $\mid$ Flags $(P) \mid \geq 2^{n} n!$
Equality cases are lost in the limit. But we will say something about equality
cases later on

## Theorem (Chambers '22)

For unconditional polytopes $P$,

## Lower bounds

The Mahler conjecture is known up to dimension 2 in general (Mahler). The centrally-symmetric Mahler is known in dimension 3 (Iriyeh-Shibata 2020), for unconditional convex bodies (Saint Raymond '81), zonoids (Reisner '86), some other settings.

## Theorem (F-Vernicos-Walsh)

For any $0<r<\infty$, Hanner polytopes uniquely minimize vol ${ }_{K}\left(B_{K}(r, 0)\right)$ among all unconditional convex bodies $K$, .

## Taking $r \rightarrow \infty$ we make some progress towards Kalai's flag conjecture.

## Corollary (F-Vernicos-Walsh)

For unconditional polytopes $P$.

Equality cases are lost in the limit. But we will say something about equality cases later on
$\square$
For unconditional polytopes $P$,

## Lower bounds

The Mahler conjecture is known up to dimension 2 in general (Mahler). The centrally-symmetric Mahler is known in dimension 3 (Iriyeh-Shibata 2020), for unconditional convex bodies (Saint Raymond '81), zonoids (Reisner '86), some other settings.

## Theorem (F-Vernicos-Walsh)

For any $0<r<\infty$, Hanner polytopes uniquely minimize vol ${ }_{K}\left(B_{K}(r, 0)\right)$ among all unconditional convex bodies $K$, .

Taking $r \rightarrow \infty$ we make some progress towards Kalai's flag conjecture.
Corollary (F-Vernicos-Walsh)
For unconditional polytopes $P,|\operatorname{Flags}(P)| \geq 2^{n} n!$.
Equality cases are lost in the limit. But we will say something about equality cases later on.

## Theorem (Chambers '22)

For unconditional polytopes $P$,

Dmitry Faifman
Funk geometry of polytopes and their flags

## Lower bounds

The Mahler conjecture is known up to dimension 2 in general (Mahler). The centrally-symmetric Mahler is known in dimension 3 (Iriyeh-Shibata 2020), for unconditional convex bodies (Saint Raymond '81), zonoids (Reisner '86), some other settings.

## Theorem (F-Vernicos-Walsh)

For any $0<r<\infty$, Hanner polytopes uniquely minimize vol ${ }_{K}\left(B_{K}(r, 0)\right)$ among all unconditional convex bodies $K$, .

Taking $r \rightarrow \infty$ we make some progress towards Kalai's flag conjecture.

## Corollary (F-Vernicos-Walsh)

For unconditional polytopes $P$, $|\operatorname{Flags}(P)| \geq 2^{n} n$ !.
Equality cases are lost in the limit. But we will say something about equality cases later on.

## Theorem (Chambers '22)

For unconditional polytopes $P$,

## Lower bounds

The Mahler conjecture is known up to dimension 2 in general (Mahler). The centrally-symmetric Mahler is known in dimension 3 (Iriyeh-Shibata 2020), for unconditional convex bodies (Saint Raymond '81), zonoids (Reisner '86), some other settings.

## Theorem (F-Vernicos-Walsh)

For any $0<r<\infty$, Hanner polytopes uniquely minimize vol ${ }_{K}\left(B_{K}(r, 0)\right)$ among all unconditional convex bodies $K$, .

Taking $r \rightarrow \infty$ we make some progress towards Kalai's flag conjecture.

## Corollary (F-Vernicos-Walsh)

For unconditional polytopes $P$, $|\operatorname{Flags}(P)| \geq 2^{n} n$ !.
Equality cases are lost in the limit. But we will say something about equality cases later on.

## Theorem (Chambers '22)

For unconditional polytopes $P,\left|\mathcal{F}_{0}(P)\right|+\cdots+\left|\mathcal{F}_{n}(P)\right| \geq 3^{n}$.

## The monodromy group of a polytope

Fix a flag $f \in \operatorname{Flags}(P)$, explicitly

$$
\emptyset=f_{-1}=f_{0} \subset \cdots \subset f_{n-1} \subset f_{n}=P .
$$

- For $0 \leq i \leq n-1$, there is a unique flag $f^{\prime} \in \operatorname{Flags}(P)$ such that $f_{j}^{\prime}=f_{j}$ or all $j \neq i$, and $f_{i}^{\prime} \neq f_{i}$
- The $i$-flip $r_{i}:$ Flags $(P) \rightarrow$ Flags $(P)$ is defined by $r_{i}(f):=f^{\prime}$. Thus $r_{i}^{2}=$ id
- The monodromy group $G_{p}$ is generated by all $i$-flips $r_{0}, \ldots, r_{n-1}$. It acts on Flags( $P$ ).
- Define the complete flip $r:=r_{n-1} \circ r_{n-2} \circ \cdots \circ r_{0} \in G P$


## The monodromy group of a polytope

Fix a flag $f \in \operatorname{Flags}(P)$, explicitly

$$
\emptyset=f_{-1}=f_{0} \subset \cdots \subset f_{n-1} \subset f_{n}=P .
$$

- For $0 \leq i \leq n-1$, there is a unique flag $f^{\prime} \in \operatorname{Flags}(P)$ such that $f_{j}^{\prime}=f_{j}$ or all $j \neq i$, and $f_{i}^{\prime} \neq f_{i}$.
- The $i$-flip $r_{i}:$ Flags $(P) \rightarrow$ Flags $(P)$ is defined by $r_{i}(f):=f^{\prime}$. Thus $r_{i}^{2}=i d$.
- The monodromy group $G_{P}$ is generated by all $i$-flips $r_{0}, \ldots, r_{n-1}$. It acts on Flags ( $P$ ).
- Define the complete flip $r:=r_{n-1} \circ r_{n-2} \circ \cdots \circ r_{0} \in G_{P}$.


## The monodromy group of a polytope

Fix a flag $f \in \operatorname{Flags}(P)$, explicitly

$$
\emptyset=f_{-1}=f_{0} \subset \cdots \subset f_{n-1} \subset f_{n}=P .
$$

- For $0 \leq i \leq n-1$, there is a unique flag $f^{\prime} \in \operatorname{Flags}(P)$ such that $f_{j}^{\prime}=f_{j}$ or all $j \neq i$, and $f_{i}^{\prime} \neq f_{i}$.
- The $i$-flip $r_{i}: \operatorname{Flags}(P) \rightarrow \operatorname{Flags}(P)$ is defined by $r_{i}(f):=f^{\prime}$. Thus $r_{i}^{2}=$ id.
- The monodromy group $G_{p}$ is generated by all $i-$-flips $r_{0}$, Flags( $P$ ).
- Define the complete flip $r:=r_{n-1} \circ r_{n-2} \circ \cdots \circ r_{0} \in G_{P}$


## The monodromy group of a polytope

Fix a flag $f \in \operatorname{Flags}(P)$, explicitly

$$
\emptyset=f_{-1}=f_{0} \subset \cdots \subset f_{n-1} \subset f_{n}=P .
$$

- For $0 \leq i \leq n-1$, there is a unique flag $f^{\prime} \in \operatorname{Flags}(P)$ such that $f_{j}^{\prime}=f_{j}$ or all $j \neq i$, and $f_{i}^{\prime} \neq f_{i}$.
- The $i$-flip $r_{i}: \operatorname{Flags}(P) \rightarrow \operatorname{Flags}(P)$ is defined by $r_{i}(f):=f^{\prime}$. Thus $r_{i}^{2}=$ id.
- The monodromy group $G_{P}$ is generated by all $i$-flips $r_{0}, \ldots, r_{n-1}$. It acts on Flags $(P)$.
- Define the complete flip $r:=r_{n-1} \circ r_{n-2} \circ \cdots \circ r_{0} \in G_{P}$.


## The monodromy group of a polytope

Fix a flag $f \in \operatorname{Flags}(P)$, explicitly

$$
\emptyset=f_{-1}=f_{0} \subset \cdots \subset f_{n-1} \subset f_{n}=P .
$$

- For $0 \leq i \leq n-1$, there is a unique flag $f^{\prime} \in \operatorname{Flags}(P)$ such that $f_{j}^{\prime}=f_{j}$ or all $j \neq i$, and $f_{i}^{\prime} \neq f_{i}$.
- The $i$-flip $r_{i}: \operatorname{Flags}(P) \rightarrow \operatorname{Flags}(P)$ is defined by $r_{i}(f):=f^{\prime}$. Thus $r_{i}^{2}=$ id.
- The monodromy group $G_{P}$ is generated by all $i$-flips $r_{0}, \ldots, r_{n-1}$. It acts on Flags $(P)$.
- Define the complete flip $r:=r_{n-1} \circ r_{n-2} \circ \cdots \circ r_{0} \in G_{p}$.


## Two terms asymptotics

For a facet $F \in \mathcal{F}_{n-1}(P)$, write $\widehat{F} \in \mathcal{F}_{0}\left(P^{\circ}\right)$ for the corresponding vertex.

```
Theorem (F-Vernicos-Walsh)
```

For a polytope $P \subset \mathbb{R}^{n}$ with $0 \in \operatorname{int}(P)$ one has
where


- If an unconditional polytope has $|\operatorname{Flags}(P)|=\left|\operatorname{Flags}\left(H_{n}\right)\right|$, it must have $c_{1}(P) \geq c_{1}\left(H_{n}\right)$ (due to known equality cases for finite radius)
- Hanner polytopes maximize $c_{1}(P)$ among polytopes with $|\operatorname{Flags}(P)|=\left|F \operatorname{lags}\left(H_{n}\right)\right|$

```
Gorollary
If P is unconditional, and }|F\operatorname{lags}(P)|=|Flags(H/H)|=\mp@subsup{2}{}{n}n!\mathrm{ , then for every
f}\inF=\operatorname{lags}(P),-\mp@subsup{f}{0}{}\in(rf\mp@subsup{)}{n-1}{
```

Does not imply uniqueness of Hanner - any (unconditional) 2-level polytope satisfies this condition

## Two terms asymptotics

For a facet $F \in \mathcal{F}_{n-1}(P)$, write $\widehat{F} \in \mathcal{F}_{0}\left(P^{\circ}\right)$ for the corresponding vertex.

## Theorem (F-Vernicos-Walsh)

For a polytope $P \subset \mathbb{R}^{n}$ with $0 \in \operatorname{int}(P)$ one has

$$
\omega_{n} \operatorname{vol}_{P}\left(B_{P}(R)\right)=c_{0}(P) R^{n}+c_{1}(P) R^{n-1}+o\left(R^{n-1}\right), \quad R \rightarrow \infty
$$

where

$$
c_{0}(P)=\frac{|\operatorname{Flags}(P)|}{(n!)^{2}}, \quad c_{1}(P)=\frac{n}{(n!)^{2}} \sum_{f \in \operatorname{Flags}(P)} \log \left(1-\left\langle\left(\widehat{r f)_{n-1}}, f_{0}\right\rangle\right) .\right.
$$

[^1]
## Corollary

If $P$ is unconditional, and $\mid$ Flags $(P)\left|=\left|F \operatorname{lags}\left(H_{n}\right)\right|=2^{n} n!\right.$, then for every
$f \in \operatorname{Flags}(P),-f_{0} \in(r f)_{n-1}$

Does not imply uniqueness of Hanner - any (unconditional) 2-level polytope satisfies this condition.

## Two terms asymptotics

For a facet $F \in \mathcal{F}_{n-1}(P)$, write $\widehat{F} \in \mathcal{F}_{0}\left(P^{\circ}\right)$ for the corresponding vertex.

## Theorem (F-Vernicos-Walsh)

For a polytope $P \subset \mathbb{R}^{n}$ with $0 \in \operatorname{int}(P)$ one has

$$
\omega_{n} \operatorname{vol}_{P}\left(B_{P}(R)\right)=c_{0}(P) R^{n}+c_{1}(P) R^{n-1}+o\left(R^{n-1}\right), \quad R \rightarrow \infty
$$

where

$$
c_{0}(P)=\frac{|\operatorname{Flags}(P)|}{(n!)^{2}}, \quad c_{1}(P)=\frac{n}{(n!)^{2}} \sum_{f \in \operatorname{Flags}(P)} \log \left(1-\left\langle\left(\widehat{r f)_{n-1}}, f_{0}\right\rangle\right) .\right.
$$

- If an unconditional polytope has $\mid$ Flags $(P)|=|$ Flags $\left(H_{n}\right) \mid$, it must have $c_{1}(P) \geq c_{1}\left(H_{n}\right)$ (due to known equality cases for finite radius).
- Hanner polytopes maximize $c_{1}(P)$ among polytopes with $\mid$ Flags $(P) \mid$

Flags $\left(H_{n}\right) \mid$
Corollary
If $P$ is unconditional, and $\mid$ Flags $(P)\left|=\left|F l a g s\left(H_{n}\right)\right|=2^{n} n!\right.$, then for every
$f \in \operatorname{Flags}(P),-f_{0} \in(r f)_{n-1}$

Does not imply uniqueness of Hanner - any (unconditional) 2-level polytope satisfies this condition

Dmitry Faifman
Funk geometry of polytopes and their flags

## Two terms asymptotics

For a facet $F \in \mathcal{F}_{n-1}(P)$, write $\widehat{F} \in \mathcal{F}_{0}\left(P^{\circ}\right)$ for the corresponding vertex.

## Theorem (F-Vernicos-Walsh)

For a polytope $P \subset \mathbb{R}^{n}$ with $0 \in \operatorname{int}(P)$ one has

$$
\omega_{n} \operatorname{vol}_{P}\left(B_{P}(R)\right)=c_{0}(P) R^{n}+c_{1}(P) R^{n-1}+o\left(R^{n-1}\right), \quad R \rightarrow \infty
$$

where

$$
c_{0}(P)=\frac{|\operatorname{Flags}(P)|}{(n!)^{2}}, \quad c_{1}(P)=\frac{n}{(n!)^{2}} \sum_{f \in \operatorname{Flags}(P)} \log \left(1-\left\langle\left(\widehat{r f)_{n-1}}, f_{0}\right\rangle\right) .\right.
$$

- If an unconditional polytope has $|\operatorname{Flags}(P)|=\mid$ Flags $\left(H_{n}\right) \mid$, it must have $c_{1}(P) \geq c_{1}\left(H_{n}\right)$ (due to known equality cases for finite radius). - Hanner polytopes maximize $c_{1}(P)$ among polytopes with $|\operatorname{Flags}(P)|=\left|\operatorname{Flags}\left(H_{n}\right)\right|$.


## Corollary

If $P$ is unconditional, and $|\operatorname{Flags}(P)|=\left|\operatorname{Flags}\left(H_{n}\right)\right|=2^{n} n!$, then for every $f \in \operatorname{Flags}(P),-f_{0} \in(r f)_{n-1}$.

Does not imply uniqueness of Hanner - any (unconditional) 2-level polytope satisfies this condition.

Dmitry Faifman
Funk geometry of polytopes and their flags

## Two terms asymptotics

For a facet $F \in \mathcal{F}_{n-1}(P)$, write $\widehat{F} \in \mathcal{F}_{0}\left(P^{\circ}\right)$ for the corresponding vertex.

## Theorem (F-Vernicos-Walsh)

For a polytope $P \subset \mathbb{R}^{n}$ with $0 \in \operatorname{int}(P)$ one has

$$
\omega_{n} \operatorname{vol}_{P}\left(B_{P}(R)\right)=c_{0}(P) R^{n}+c_{1}(P) R^{n-1}+o\left(R^{n-1}\right), \quad R \rightarrow \infty
$$

where

$$
c_{0}(P)=\frac{|\operatorname{Flags}(P)|}{(n!)^{2}}, \quad c_{1}(P)=\frac{n}{(n!)^{2}} \sum_{f \in \operatorname{Flags}(P)} \log \left(1-\left\langle\left(\widehat{r f)_{n-1}}, f_{0}\right\rangle\right) .\right.
$$

- If an unconditional polytope has $|\operatorname{Flags}(P)|=\mid$ Flags $\left(H_{n}\right) \mid$, it must have $c_{1}(P) \geq c_{1}\left(H_{n}\right)$ (due to known equality cases for finite radius).
- Hanner polytopes maximize $c_{1}(P)$ among polytopes with $|\mathrm{Flags}(P)|=\left|\mathrm{Flags}\left(H_{n}\right)\right|$.


## Corollary

If $P$ is unconditional, and $|\operatorname{Flags}(P)|=\left|\operatorname{Flags}\left(H_{n}\right)\right|=2^{n} n!$, then for every $f \in \operatorname{Flags}(P),-f_{0} \in(r f)_{n-1}$.

Does not imply uniqueness of Hanner - any (unconditional) 2-level polytope satisfies this condition.

## The Santaló point

The Santaló point $s_{K}$ of $K \subset \mathbb{R}^{n}$ is the unique point $s_{K}=q \in \operatorname{int}(K)$ such that $\left|K^{q}\right|$ is minimized. One has $s_{K}=0$ if and only if 0 is the center of mass of $K^{\circ}$.

## Theorem (F-Vernicos-Walsh)

- For each $0<r<\infty$, there is a unique point $q=s_{r}(K) \in \operatorname{int}(K)$ that minimizes the

Funk volume of $B_{K}(q, r)$ inside $K$

- Similarly,

has a unique minimum at $s_{\infty}(P)=\lim _{R \rightarrow \infty} s_{R}(P)$
- $s_{\infty}(P)=0$ if and only if

$$
|\operatorname{Flags}(F)| \widehat{F}=0
$$

Strict convexity of $f(q):=\operatorname{vol}_{K}\left(B_{K}(q, r)\right)$ follows from the strict convexity of
$\square$
Less trivial is showing that $f$ is proper, that is $f(q) \rightarrow \infty$ as $q \rightarrow \partial K$, without
regularity assumptions on $K$. We use the projective invariance of the Funk volume to squeeze infinitely many disjoint Hilbert balls of fixed radius igtp a 雷all fentereactat $\partial$ 金

## The Santaló point

The Santaló point $s_{K}$ of $K \subset \mathbb{R}^{n}$ is the unique point $s_{K}=q \in \operatorname{int}(K)$ such that $\left|K^{q}\right|$ is minimized. One has $s_{K}=0$ if and only if 0 is the center of mass of $K^{\circ}$.

## Theorem (F-Vernicos-Walsh)

- For each $0<r<\infty$, there is a unique point $q=s_{r}(K) \in \operatorname{int}(K)$ that minimizes the Funk volume of $B_{K}(q, r)$ inside $K$.
- Similarly

has a unique minimum at $s_{\infty}(P)=\lim _{R \rightarrow \infty} s_{R}(P)$
- $s_{\infty}(P)=0$ if and only if
$\operatorname{Flags}(F) \mid \widehat{F}=0$

Strict convexity of $f(q):=\operatorname{vol}_{K}\left(B_{K}(q, r)\right)$ follows from the strict convexity of


Less trivial is showing that $f$ is proper, that is $f(q) \rightarrow \infty$ as $q \rightarrow \partial K$, without
regularity assumptions on $K$. We use the projective invariance of the Funk volume to


## The Santaló point

The Santaló point $s_{K}$ of $K \subset \mathbb{R}^{n}$ is the unique point $s_{K}=q \in \operatorname{int}(K)$ such that $\left|K^{q}\right|$ is minimized. One has $s_{K}=0$ if and only if 0 is the center of mass of $K^{\circ}$.

## Theorem (F-Vernicos-Walsh)

- For each $0<r<\infty$, there is a unique point $q=s_{r}(K) \in \operatorname{int}(K)$ that minimizes the Funk volume of $B_{K}(q, r)$ inside $K$.
- Similarly,

$$
c_{1}(P, q)=\lim _{R \rightarrow \infty} R^{-(n-1)}\left(\omega_{n} \operatorname{vol}_{P}\left(B_{P}(q, R)\right)-\frac{|F \operatorname{lags}(P)|}{(n!)^{2}} R^{n}\right)
$$

has a unique minimum at $s_{\infty}(P)=\lim _{R \rightarrow \infty} s_{R}(P)$.

- $s_{\infty}(P)=0$ if and only if

Strict convexity of $f(q):=\operatorname{vol}_{K}\left(B_{K}(q, r)\right)$ follows from the strict convexity of $x \mapsto\left|K^{x}\right|$

Less trivial is showing that $f$ is proper, that is $f(q) \rightarrow \infty$ as $q \rightarrow \partial K$, without
regularity assumptions on $K$. We use the projective invariance of the Funk volume to squeeze infinitely many disjoint Hilbert balls of fixed radius igtp a 岽all fentereactat $\partial$ 金

## The Santaló point

The Santaló point $s_{K}$ of $K \subset \mathbb{R}^{n}$ is the unique point $s_{K}=q \in \operatorname{int}(K)$ such that $\left|K^{q}\right|$ is minimized. One has $s_{K}=0$ if and only if 0 is the center of mass of $K^{\circ}$.

## Theorem (F-Vernicos-Walsh)

- For each $0<r<\infty$, there is a unique point $q=s_{r}(K) \in \operatorname{int}(K)$ that minimizes the Funk volume of $B_{K}(q, r)$ inside $K$.
- Similarly,

$$
c_{1}(P, q)=\lim _{R \rightarrow \infty} R^{-(n-1)}\left(\omega_{n} \operatorname{vol}_{P}\left(B_{P}(q, R)\right)-\frac{|\operatorname{Flags}(P)|}{(n!)^{2}} R^{n}\right)
$$

has a unique minimum at $s_{\infty}(P)=\lim _{R \rightarrow \infty} s_{R}(P)$.

- $s_{\infty}(P)=0$ if and only if

$$
\sum_{F \in \mathcal{F}_{n-1}(P)}|\operatorname{Flags}(F)| \widehat{F}=0 .
$$

Strict convexity of $f(q):=\operatorname{vol}_{K}\left(B_{K}(q, r)\right)$ follows from the strict convexity of


Less trivial is showing that $f$ is proper, that is $f(q) \rightarrow \infty$ as $q \rightarrow \partial K$, without
regularity assumptions on $K$. We use the projective invariance of the Funk volume to


## The Santaló point

The Santaló point $s_{K}$ of $K \subset \mathbb{R}^{n}$ is the unique point $s_{K}=q \in \operatorname{int}(K)$ such that $\left|K^{q}\right|$ is minimized. One has $s_{K}=0$ if and only if 0 is the center of mass of $K^{\circ}$.

## Theorem (F-Vernicos-Walsh)

- For each $0<r<\infty$, there is a unique point $q=s_{r}(K) \in \operatorname{int}(K)$ that minimizes the Funk volume of $B_{K}(q, r)$ inside $K$.
- Similarly,

$$
c_{1}(P, q)=\lim _{R \rightarrow \infty} R^{-(n-1)}\left(\omega_{n} \operatorname{vol}_{P}\left(B_{P}(q, R)\right)-\frac{|F \operatorname{lags}(P)|}{(n!)^{2}} R^{n}\right)
$$

has a unique minimum at $s_{\infty}(P)=\lim _{R \rightarrow \infty} s_{R}(P)$.

- $s_{\infty}(P)=0$ if and only if

$$
\sum_{F \in \mathcal{F}_{n-1}(P)}|\operatorname{Flags}(F)| \widehat{F}=0
$$

Strict convexity of $f(q):=\operatorname{vol}_{K}\left(B_{K}(q, r)\right)$ follows from the strict convexity of $x \mapsto\left|K^{x}\right|$.

Less trivial is showing that $f$ is proper, that is $f(q) \rightarrow \infty$ as $q \rightarrow \partial K$, without
regularity assumptions on $K$. We use the projective invariance of the Funk volume to


## The Santaló point

The Santaló point $s_{K}$ of $K \subset \mathbb{R}^{n}$ is the unique point $s_{K}=q \in \operatorname{int}(K)$ such that $\left|K^{q}\right|$ is minimized. One has $s_{K}=0$ if and only if 0 is the center of mass of $K^{\circ}$.

## Theorem (F-Vernicos-Walsh)

- For each $0<r<\infty$, there is a unique point $q=s_{r}(K) \in \operatorname{int}(K)$ that minimizes the Funk volume of $B_{K}(q, r)$ inside $K$.
- Similarly,

$$
c_{1}(P, q)=\lim _{R \rightarrow \infty} R^{-(n-1)}\left(\omega_{n} \operatorname{vol}_{P}\left(B_{P}(q, R)\right)-\frac{|F \operatorname{lags}(P)|}{(n!)^{2}} R^{n}\right)
$$

has a unique minimum at $s_{\infty}(P)=\lim _{R \rightarrow \infty} s_{R}(P)$.

- $s_{\infty}(P)=0$ if and only if

$$
\sum_{F \in \mathcal{F}_{n-1}(P)}|\operatorname{Flags}(F)| \widehat{F}=0
$$

Strict convexity of $f(q):=\operatorname{vol}_{K}\left(B_{K}(q, r)\right)$ follows from the strict convexity of $x \mapsto\left|K^{x}\right|$.

Less trivial is showing that $f$ is proper, that is $f(q) \rightarrow \infty$ as $q \rightarrow \partial K$, without regularity assumptions on $K$. We use the projective invariance of the Funk volume to squeeze infinitely many disjoint Hilbert balls of fixed radius into a ball centered at $\partial \underline{\underline{\underline{K}}}$.

## Upper bound

## Conjecture (Funk-Blaschke-Santaló)

Given $0<r<\infty, \min _{q \in K} \operatorname{vol}_{K}\left(B_{K}(q, r)\right)$ is uniquely maximized by ellipsoids.

```
Motivation: \bullet For r }->0\mathrm{ it is the Blaschke-Santaló inequality.
- For r->\infty, it is the centro-affine isoperimetric inequality of Lutwak
\Omegan}(K,c.m.)\leq\Omega\Omega(\mp@subsup{B}{n}{n}
```


## Theorem (Berck-Bernig-Vernicos 10, Vernicos-Yang 19)

$\square$


The centro-projective surface area $\mathcal{C}_{0}(K)$ ia uniquely maximized by ellipsoids.

The Colbois-Verovic volume entropy conjecture:
Theorem (Tholozan Duke '17, Vernicos-Walsh Ann. Sci. Éc. Norm. Supér '21)
In Hitbert geometry, lim sup,
$\log \operatorname{vol}_{k}^{H}\left(B_{K}^{H}(q, r)\right)$


## Upper bound

## Conjecture (Funk-Blaschke-Santaló)

Given $0<r<\infty, \min _{q \in K} \operatorname{vol}_{K}\left(B_{K}(q, r)\right)$ is uniquely maximized by ellipsoids.
Motivation: • For $r \rightarrow 0$ it is the Blaschke-Santaló inequality.

- For $r \rightarrow \infty$, it is the centro-affine isoperimetric inequality of Lutwak:
$\Omega_{n}(K, c . m.) \leq \Omega_{n}\left(B^{n}\right)$.

Theorem (Berck-Bernig-Vernicos 10, Vernicos-Yang 19)
For a $C^{1,1}$ convex body $K$ and $0 \in \operatorname{int}(K)$, the Hilbert ball $B_{K}^{H}(R, 0)$ has volume


The centro-projective surface area $\mathcal{C}_{0}(K)$ ia uniquely maximized by ellipsoids.

The Colbois-Verovic volume entropy conjecture:
Theorem (Tholozan Duke '17, Vernicos-Walsh Ann. Sci. Éc. Norm. Supér '21)

In Hilbert geometry, lim sup,

Dmitry Faifman
Funk geometry of polytopes and their flags

## Upper bound

## Conjecture (Funk-Blaschke-Santaló)

Given $0<r<\infty, \min _{q \in K} \operatorname{vol}_{K}\left(B_{K}(q, r)\right)$ is uniquely maximized by ellipsoids.
Motivation: - For $r \rightarrow 0$ it is the Blaschke-Santaló inequality.

- For $r \rightarrow \infty$, it is the centro-affine isoperimetric inequality of Lutwak:
$\Omega_{n}(K, c . m.) \leq \Omega_{n}\left(B^{n}\right)$.


## Theorem (Berck-Bernig-Vernicos '10, Vernicos-Yang '19)

For a $C^{1,1}$ convex body $K$ and $0 \in \operatorname{int}(K)$, the Hilbert ball $B_{K}^{H}(R, 0)$ has volume

$$
\operatorname{vol}_{K}^{H}\left(B_{K}^{H}(R, 0)\right) \sim \frac{1}{n-1} \mathcal{C}_{0}(K) e^{(n-1) R}, \quad R \rightarrow \infty .
$$

The centro-projective surface area $\mathcal{C}_{0}(K)$ ia uniquely maximized by ellipsoids.
The Colbois-Verovic volume entropy conjecture:

## Theorem (Tholozan Duke '17, Vernicos-Walsh Ann. Sci. Éc. Norm. Supér '21)

$\square$

## Upper bound

## Conjecture (Funk-Blaschke-Santaló)

Given $0<r<\infty, \min _{q \in K} \operatorname{vol}_{K}\left(B_{K}(q, r)\right)$ is uniquely maximized by ellipsoids.
Motivation: - For $r \rightarrow 0$ it is the Blaschke-Santaló inequality.

- For $r \rightarrow \infty$, it is the centro-affine isoperimetric inequality of Lutwak:
$\Omega_{n}(K, c . m.) \leq \Omega_{n}\left(B^{n}\right)$.


## Theorem (Berck-Bernig-Vernicos '10, Vernicos-Yang '19)

For a $C^{1,1}$ convex body $K$ and $0 \in \operatorname{int}(K)$, the Hilbert ball $B_{K}^{H}(R, 0)$ has volume

$$
\operatorname{vol}_{K}^{H}\left(B_{K}^{H}(R, 0)\right) \sim \frac{1}{n-1} \mathcal{C}_{0}(K) e^{(n-1) R}, \quad R \rightarrow \infty .
$$

The centro-projective surface area $\mathcal{C}_{0}(K)$ ia uniquely maximized by ellipsoids.
The Colbois-Verovic volume entropy conjecture:.
Theorem (Tholozan Duke '17, Vernicos-Walsh Ann. Sci. Éc. Norm. Supér '21)
In Hilbert geometry, $\lim _{\sup _{r \rightarrow \infty}} \frac{\log \operatorname{vol}_{K}^{H}\left(B_{K}^{H}(q, r)\right)}{r} \leq n-1$.


## Upper bound

## Conjecture (Funk-Blaschke-Santaló)

Given $0<r<\infty, \min _{q \in K} \operatorname{vol}_{K}\left(B_{K}(q, r)\right)$ is uniquely maximized by ellipsoids.
Motivation: - For $r \rightarrow 0$ it is the Blaschke-Santaló inequality.

- For $r \rightarrow \infty$, it is the centro-affine isoperimetric inequality of Lutwak:
$\Omega_{n}(K, c . m.) \leq \Omega_{n}\left(B^{n}\right)$.


## Theorem (Berck-Bernig-Vernicos '10, Vernicos-Yang '19)

For a $C^{1,1}$ convex body $K$ and $0 \in \operatorname{int}(K)$, the Hilbert ball $B_{K}^{H}(R, 0)$ has volume

$$
\operatorname{vol}_{K}^{H}\left(B_{K}^{H}(R, 0)\right) \sim \frac{1}{n-1} \mathcal{C}_{0}(K) e^{(n-1) R}, \quad R \rightarrow \infty
$$

The centro-projective surface area $\mathcal{C}_{0}(K)$ ia uniquely maximized by ellipsoids.
The Colbois-Verovic volume entropy conjecture:.
Theorem (Tholozan Duke '17, Vernicos-Walsh Ann. Sci. Éc. Norm. Supér '21)
In Hilbert geometry, lim $\sup _{r \rightarrow \infty} \frac{\log \operatorname{vol}_{K}^{H}\left(B_{K}^{H}(q, r)\right)}{r} \leq n-1$.
The Funk-Blaschke-Santaló conjecture implies and sharpens Colbois-Verōvic.

## More upper bound

## Theorem (F, jdg '22+)

Among unconditional convex bodies $K$, ellipsoids uniquely maximize $\operatorname{vol}_{K}\left(B_{K}(r, 0)\right)$ for any $0<r<\infty$.

Theorem (F-Vernicos-Walsh)
Among $m$-polygons $P \subset \mathbb{R}^{2}$, affine images of the regular $m$-polygon uniquely
$\square$

## More upper bound

## Theorem (F, jdg '22+)

Among unconditional convex bodies $K$, ellipsoids uniquely maximize $\operatorname{vol}_{K}\left(B_{K}(r, 0)\right)$ for any $0<r<\infty$.

## Theorem (F-Vernicos-Walsh)

Among m-polygons $P \subset \mathbb{R}^{2}$, affine images of the regular m-polygon uniquely maximize $c_{1}\left(P, s_{\infty}(P)\right)$.

## Functional inequalities

## Functional Funk-Blaschke-Santaló conjecture

For even $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}$, and $0<\lambda<1$ one has

$$
\int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} e^{-\phi(x)-\mathcal{L} \phi(\xi)+\lambda\langle x, \xi\rangle} d x d \xi \leq \frac{(2 \pi)^{n}}{\left(1-\lambda^{2}\right)^{n / 2}}
$$

with equality only for $e^{-\phi}$ gaussian.

- Proved in [F, jdg '22+] for unconditional $\phi$


## Functional Funk-Mahler conjecture

For convex even $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$, and $0<\lambda<1$ one has

equality attained e.g. by $\phi(x)=\left|x_{1}\right|+\cdots+\left|x_{n}\right|$

- Proved (FVW) for unconditional $\phi$ using Fradelizi-Meyer (Positivity '08)


## Functional inequalities

## Functional Funk-Blaschke-Santaló conjecture

For even $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}$, and $0<\lambda<1$ one has

$$
\int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} e^{-\phi(x)-\mathcal{L} \phi(\xi)+\lambda\langle x, \xi\rangle} d x d \xi \leq \frac{(2 \pi)^{n}}{\left(1-\lambda^{2}\right)^{n / 2}}
$$

with equality only for $e^{-\phi}$ gaussian.

- Proved in [F, jdg '22+] for unconditional $\phi$.


## Functional Funk-Mahler conjecture

For convex even $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$, and $0<\lambda<1$ one has

equality attained e.g. by $\phi(x)=\left|x_{1}\right|+\cdots+\left|x_{n}\right|$

- Proved (FVW) for unconditional $\phi$ using Fradelizi-Meyer (Positivity '08)


## Functional inequalities

## Functional Funk-Blaschke-Santaló conjecture

For even $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}$, and $0<\lambda<1$ one has

$$
\int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} e^{-\phi(x)-\mathcal{L} \phi(\xi)+\lambda\langle x, \xi\rangle} d x d \xi \leq \frac{(2 \pi)^{n}}{\left(1-\lambda^{2}\right)^{n / 2}}
$$

with equality only for $e^{-\phi}$ gaussian.

- Proved in [F, jdg '22+] for unconditional $\phi$.


## Functional Funk-Mahler conjecture

For convex even $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$, and $0<\lambda<1$ one has

$$
\int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} e^{-\phi(x)-\mathcal{L} \phi(\xi)+\lambda\langle x, \xi\rangle} d x d \xi \geq \frac{2^{n}}{\lambda^{n}}\left(\log \frac{1+\lambda}{1-\lambda}\right)^{n}
$$

equality attained e.g. by $\phi(x)=\left|x_{1}\right|+\cdots+\left|x_{n}\right|$.

[^2]
## Functional inequalities

## Functional Funk-Blaschke-Santaló conjecture

For even $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}$, and $0<\lambda<1$ one has

$$
\int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} e^{-\phi(x)-\mathcal{L} \phi(\xi)+\lambda\langle x, \xi\rangle} d x d \xi \leq \frac{(2 \pi)^{n}}{\left(1-\lambda^{2}\right)^{n / 2}}
$$

with equality only for $e^{-\phi}$ gaussian.

- Proved in [F, jdg '22+] for unconditional $\phi$.


## Functional Funk-Mahler conjecture

For convex even $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$, and $0<\lambda<1$ one has

$$
\int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} e^{-\phi(x)-\mathcal{L} \phi(\xi)+\lambda\langle x, \xi\rangle} d x d \xi \geq \frac{2^{n}}{\lambda^{n}}\left(\log \frac{1+\lambda}{1-\lambda}\right)^{n}
$$

equality attained e.g. by $\phi(x)=\left|x_{1}\right|+\cdots+\left|x_{n}\right|$.

- Proved (FVW) for unconditional $\phi$ using Fradelizi-Meyer (Positivity '08).


## Wild speculations

## Yet another conjecture of Kalai

A centrally-symmetric polytope $P$ satisfies $|\operatorname{Flags}(P)| \geq \frac{n!^{2}}{2^{n}}|P|\left|P^{\circ}\right|$.
Aiming for a finite radius version, we may boldly propose
A reverse Bishop-Gromov-type conjecture (FVW)
Let $0<r<R<\infty$, and $K \subset \mathbb{R}^{n}$ a centrally-symmetric convex body. Then


Kalai's conjecture follows when $r \rightarrow 0, R \rightarrow \infty$

## Wild speculations

## Yet another conjecture of Kalai

A centrally-symmetric polytope $P$ satisfies $|\operatorname{Flags}(P)| \geq \frac{n!^{2}}{2^{n}}\left|P \| P^{\circ}\right|$.
Aiming for a finite radius version, we may boldly propose

## A reverse Bishop-Gromov-type conjecture (FVW)

Let $0<r<R<\infty$, and $K \subset \mathbb{R}^{n}$ a centrally-symmetric convex body. Then

$$
\frac{\operatorname{vol}_{K}\left(B_{K}(R)\right)}{\operatorname{vol}_{K}\left(B_{K}(r)\right)} \geq \frac{\operatorname{vol}_{H_{n}}\left(B_{H_{n}}(R)\right)}{\operatorname{vol}_{H_{n}}\left(B_{H_{n}}(r)\right)} .
$$

Kalai's conjecture follows when $r \rightarrow 0, R \rightarrow \infty$.

## Wild speculations

## Yet another conjecture of Kalai

A centrally-symmetric polytope $P$ satisfies $|\operatorname{Flags}(P)| \geq \frac{n!^{2}}{2^{n}}\left|P \| P^{\circ}\right|$.
Aiming for a finite radius version, we may boldly propose

## A reverse Bishop-Gromov-type conjecture (FVW)

Let $0<r<R<\infty$, and $K \subset \mathbb{R}^{n}$ a centrally-symmetric convex body. Then

$$
\frac{\operatorname{vol}_{K}\left(B_{K}(R)\right)}{\operatorname{vol}_{K}\left(B_{K}(r)\right)} \geq \frac{\operatorname{vol}_{H_{n}}\left(B_{H_{n}}(R)\right)}{\operatorname{vol}_{H_{n}}\left(B_{H_{n}}(r)\right)}
$$

Kalai's conjecture follows when $r \rightarrow 0, R \rightarrow \infty$.

## Direct Bishop-Gromov is false

## Bishop-Gromov theorem

Let $0<r<R<\infty, M$ complete Riemannian with $\operatorname{Ric}_{M} \geq(n-1) K$. Let $M_{K}$ be the model space of that curvature. Then

$$
\frac{\operatorname{vol}_{M}\left(B_{M}(p, R)\right)}{\operatorname{vol}_{M}\left(B_{M}(p, r)\right)} \leq \frac{\operatorname{vol}_{M_{K}}\left(B_{M_{K}}\left(p_{M}, R\right)\right)}{\operatorname{vol}_{M_{K}}\left(B_{M_{K}}\left(p_{M}, r\right)\right)}
$$

The direct analogue of Bishop-Gromov is provably false:

## A Bishop-Gromov-type FALSE conjecture

Let $0<r<R<\infty, K \subset \mathbb{R}^{n}$ a centrally-symmetric convex body, $E_{n}$ an ellipsoid. Then


This is false: Taking $R, r \rightarrow 0$, this implies the inequality

shown to be false by Klartag ('17) even for unconditionnal, cQpyex, be diess ,

## Direct Bishop-Gromov is false

## Bishop-Gromov theorem

Let $0<r<R<\infty, M$ complete Riemannian with $\operatorname{Ric}_{M} \geq(n-1) K$. Let $M_{K}$ be the model space of that curvature. Then

$$
\frac{\operatorname{vol}_{M}\left(B_{M}(p, R)\right)}{\operatorname{vol}_{M}\left(B_{M}(p, r)\right)} \leq \frac{\operatorname{vol}_{M_{K}}\left(B_{M_{K}}\left(p_{M}, R\right)\right)}{\operatorname{vol}_{M_{K}}\left(B_{M_{K}}\left(p_{M}, r\right)\right)}
$$

The direct analogue of Bishop-Gromov is provably false:

## A Bishop-Gromov-type FALSE conjecture

Let $0<r<R<\infty, K \subset \mathbb{R}^{n}$ a centrally-symmetric convex body, $E_{n}$ an ellipsoid. Then

$$
\frac{\operatorname{vol}_{K}\left(B_{K}(R)\right)}{\operatorname{vol}_{K}\left(B_{K}(r)\right)} \leq \frac{\operatorname{vol}_{E_{n}}\left(B_{E_{n}}(R)\right)}{\operatorname{vol}_{E_{n}}\left(B_{E_{n}}(r)\right)}
$$

This is false: Taking $R, r \rightarrow 0$, this implies the inequality

shown to be false by Klartag ('17) even for unconditiqnal, copyex, be dięs,

## Direct Bishop-Gromov is false

## Bishop-Gromov theorem

Let $0<r<R<\infty, M$ complete Riemannian with $\operatorname{Ric}_{M} \geq(n-1) K$. Let $M_{K}$ be the model space of that curvature. Then

$$
\frac{\operatorname{vol}_{M}\left(B_{M}(p, R)\right)}{\operatorname{vol}_{M}\left(B_{M}(p, r)\right)} \leq \frac{\operatorname{vol}_{M_{K}}\left(B_{M_{K}}\left(p_{M}, R\right)\right)}{\operatorname{vol}_{M_{K}}\left(B_{M_{K}}\left(p_{M}, r\right)\right)}
$$

The direct analogue of Bishop-Gromov is provably false:

## A Bishop-Gromov-type FALSE conjecture

Let $0<r<R<\infty, K \subset \mathbb{R}^{n}$ a centrally-symmetric convex body, $E_{n}$ an ellipsoid. Then

$$
\frac{\operatorname{vol}_{K}\left(B_{K}(R)\right)}{\operatorname{vol}_{K}\left(B_{K}(r)\right)} \leq \frac{\operatorname{vol}_{E_{n}}\left(B_{E_{n}}(R)\right)}{\operatorname{vol}_{E_{n}}\left(B_{E_{n}}(r)\right)} .
$$

This is false: Taking $R, r \rightarrow 0$, this implies the inequality

$$
\int_{K \times K^{\circ}}\langle x, \xi\rangle^{2} d x d \xi \leq \frac{n}{(n+2)^{2}}\left|K \| K^{\circ}\right|,
$$

shown to be false by Klartag ('17) even for unconditional convex bodies

## Direct Bishop-Gromov is false

## Bishop-Gromov theorem

Let $0<r<R<\infty, M$ complete Riemannian with $\operatorname{Ric}_{M} \geq(n-1) K$. Let $M_{K}$ be the model space of that curvature. Then

$$
\frac{\operatorname{vol}_{M}\left(B_{M}(p, R)\right)}{\operatorname{vol}_{M}\left(B_{M}(p, r)\right)} \leq \frac{\operatorname{vol}_{M_{K}}\left(B_{M_{K}}\left(p_{M}, R\right)\right)}{\operatorname{vol}_{M_{K}}\left(B_{M_{K}}\left(p_{M}, r\right)\right)}
$$

The direct analogue of Bishop-Gromov is provably false:

## A Bishop-Gromov-type FALSE conjecture

Let $0<r<R<\infty, K \subset \mathbb{R}^{n}$ a centrally-symmetric convex body, $E_{n}$ an ellipsoid. Then

$$
\frac{\operatorname{vol}_{K}\left(B_{K}(R)\right)}{\operatorname{vol}_{K}\left(B_{K}(r)\right)} \leq \frac{\operatorname{vol}_{E_{n}}\left(B_{E_{n}}(R)\right)}{\operatorname{vol}_{E_{n}}\left(B_{E_{n}}(r)\right)} .
$$

This is false: Taking $R, r \rightarrow 0$, this implies the inequality

$$
\int_{K \times K^{\circ}}\langle x, \xi\rangle^{2} d x d \xi \leq \frac{n}{(n+2)^{2}}\left|K \| K^{\circ}\right|,
$$

shown to be false by Klartag ('17) even for unconditional convex bodies

## The End

Thanks for listening!

## Direct Bishop-Gromov is false

The other direction of the conjecture is provably false:

## A Bishop-Gromov-type FALSE conjecture

Let $0<r<R<\infty, K \subset \mathbb{R}^{n}$ a centrally-symmetric convex body, $E_{n}$ an ellipsoid. Then

$$
\frac{\operatorname{vol}_{K}\left(B_{K}(R)\right)}{\operatorname{vol}_{K}\left(B_{K}(r)\right)} \leq \frac{\operatorname{vol}_{E_{n}}\left(B_{E_{n}}(R)\right)}{\operatorname{vol}_{E_{n}}\left(B_{E_{n}}(r)\right)}
$$

This is false: Taking $R, r \rightarrow 0$, this implies the inequality

shown to be false by Klartag ('17) even for unconditional convex bodies.
The Reverse Bishop-Gromov-type conjecture would imply


## Direct Bishop-Gromov is false

The other direction of the conjecture is provably false:

## A Bishop-Gromov-type FALSE conjecture

Let $0<r<R<\infty, K \subset \mathbb{R}^{n}$ a centrally-symmetric convex body, $E_{n}$ an ellipsoid. Then

$$
\frac{\operatorname{vol}_{K}\left(B_{K}(R)\right)}{\operatorname{vol}_{K}\left(B_{K}(r)\right)} \leq \frac{\operatorname{vol}_{E_{n}}\left(B_{E_{n}}(R)\right)}{\operatorname{vol}_{E_{n}}\left(B_{E_{n}}(r)\right)}
$$

This is false: Taking $R, r \rightarrow 0$, this implies the inequality

$$
\int_{K \times K^{\circ}}\langle x, \xi\rangle^{2} d x d \xi \leq \frac{n}{(n+2)^{2}}\left|K \| K^{\circ}\right|,
$$

shown to be false by Klartag ('17) even for unconditional convex bodies.
The Reverse Bishop-Gromov-type conjecture would imply


## Direct Bishop-Gromov is false

The other direction of the conjecture is provably false:

## A Bishop-Gromov-type FALSE conjecture

Let $0<r<R<\infty, K \subset \mathbb{R}^{n}$ a centrally-symmetric convex body, $E_{n}$ an ellipsoid. Then

$$
\frac{\operatorname{vol}_{K}\left(B_{K}(R)\right)}{\operatorname{vol}_{K}\left(B_{K}(r)\right)} \leq \frac{\operatorname{vol}_{E_{n}}\left(B_{E_{n}}(R)\right)}{\operatorname{vol}_{E_{n}}\left(B_{E_{n}}(r)\right)}
$$

This is false: Taking $R, r \rightarrow 0$, this implies the inequality

$$
\int_{K \times K^{\circ}}\langle x, \xi\rangle^{2} d x d \xi \leq \frac{n}{(n+2)^{2}}\left|K \| K^{\circ}\right|,
$$

shown to be false by Klartag ('17) even for unconditional convex bodies.
The Reverse Bishop-Gromov-type conjecture would imply

$$
\int_{K \times K^{\circ}}\langle x, \xi\rangle^{2} d x d \xi \geq \frac{n-\frac{1}{3}}{(n+1)(n+2)}|K|\left|K^{\circ}\right| .
$$

Can you prove or disprove it?


[^0]:    - Both are examples of "projective metrics" : straight segments are geodesics.
    - Example. The Funk metric in the unit Euclidean ball is
    $d_{F}(x, y)=d_{H}(x, y)+f(y)-f(x)$ where $d_{H}$ is the Beltrami-Klein hyperbolic
    metric (also the Hilbert metric in the ball), and $f(x)$

[^1]:    - If an unconditional polytope has $|\operatorname{Flags}(P)|=\left|\operatorname{Flags}\left(H_{n}\right)\right|$, it must have
    $c_{1}(P) \geq c_{1}\left(H_{n}\right)$ (due to known equality cases for finite radius)
    - Hanner polytopes maximize $c_{1}(P)$ among polytopes with $\mid$ Flags $(P)|=| F l a g s\left(H_{n}\right)$

[^2]:    - Proved (FVW) for unconditional $\phi$ using Fradelizi-Meyer (Positivity '08)

