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Funk and Hilbert geometries

Assume K ⊂ Rn is a convex body with int(K) 6= ∅.

Definition

The Funk metric on int(K) is the non-reversible Finsler metric whose unit
tangent ball BxK is K , with x at the origin. Equivalently, φF

K |x(v) = ‖v‖K−x .

It is an affine-invariant construction. The distance is dF
K (x , y) = log |xz||yz| .

Definition

The Hilbert metric is

dH
K (x , y) =

1

2
(dF

K (x , y) + dF
K (y , x)) =

1

2
log
|xz ||wy |
|yz ||wx | .

Like the cross ratio, the Hilbert metric is projectively invariant.
• Both are examples of ”projective metrics”: straight segments are geodesics.

• Example. The Funk metric in the unit Euclidean ball is
dF (x , y) = dH(x , y) + f (y)− f (x) where dH is the Beltrami-Klein hyperbolic
metric (also the Hilbert metric in the ball), and f (x) = − 1

2
log(1− |x |2).
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Volume in Funk geometry

The outward ball in Funk metric is

BF
K (q, r) = {x : dF

K (q, x) ≤ r} = (1− e−r )(K − q) + q.

Defintion

The Holmes-Thompson volume of A ⊂ int(K) is volK (A) = ω−1
n

�
A |K

x |dx , where
K x ⊂ (Rn)∗ is the polar body with respect to x .

We will consider the volume of Funk balls:

volK (BK (0, r)) = ω−1
n

�
(1−e−r )K

|K x |dx .

Basic properties:

• Multiplicativity. Assume K ⊂ Ra, L ⊂ Rb. Then

(a + b)!ωa+b volK×L(BK×L((p, q), r)) = a!ωa volK (BK (p, r)) · b!ωb volL(BL(q, r)).

• Duality. Assume 0 ∈ int(K). Then volK (BK (0, r)) = volK◦ (BK◦ (0, r)).

Corollary. If Hn is a centered n-dimensional Hanner polytope, and λ = 1− e−r ,

volHn (BHn (0, r)) = ω−1
n

�
λHn

|Hx
n |dx =

2n

n!ωn

(
log

1 + λ

1− λ

)n

.
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Projective invariance

Theorem (F)

Let g : RPn → RPn be a collineation (fractional linear map), and assume g(K) ⊂ Rn.
Let φK be the Funk Finsler norm on int(K).
Then g∗φgK − φK ∈ C(TK) is an exact 1-form.

Corollary

Funk volume is projectively invariant: volK (A) = volgK (gA).

Furthermore, the Funk metric exhibits projective duality.

For K ⊂ RPn, K∨ = {ξ ∈ (RPn)∨ : ξ ∩ int(K) = ∅} is its polar convex body.

Theorem (F)

If K ⊂ L are two convex bodies in RPn, then volL(K) = volK∨ (L∨).
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Asymptotics of volume

Asymptotics of volumes of metric balls:

- As r → 0, vol(BK (0, r)) ∼ ω−1
n |K × K◦|rn.

- As r →∞, we have

Theorem (Berck-Bernig-Vernicos, adjusted to Funk metric)

When K ⊂ Rn is C 2 and strictly convex, vol(BK (q, r)) ∼ cnΩn(K , q)e
n−1

2
r .

Here Ωn(K , q) =
�
∂K

k
1/2
x

〈x−q,νx 〉(n−1)/2 dHn−1(x) is the centro-affine area of K

with center at q.

Remark. Berck-Bernig-Vernicos obtain the result in the Hilbert metric setting
under the weaker C 1,1 assumption and no strict convexity.
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The leading coefficient

A (full) flag of P is a chain f = (∅ = f−1 ⊂ f0 ⊂ f1 ⊂ · · · ⊂ fn−1 ⊂ fn = P), where
fj ∈ Fj (P) is a j-dimensional face of P.

Theorem (Vernicos-Walsh ’18)

In Hilbert geometry, if P ⊂ Rn is a convex polytope then

volHP (BH
P (q, r)) = cn|Flags(P)|rn + o(rn), r →∞.

Theorem (F-Vernicos-Walsh)

If P ⊂ Rn is a convex polytope, then

volFP(BF
P (q, r)) =

1

ωn(n!)2
|Flags(P)|rn + o(rn), r →∞

The flag number |Flags(P)| of P is a combinatorial analogue of centro-affine surface
area.

Theorem (Schütt ’91)

If P ⊂ Rn is a convex polytope, and Pδ its floating body, then

voln(P)− voln(Pδ) ∼
1

n!nn−1
|Flags(P)|δ

(
log

1

δ

)n−1

, δ → 0+
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In Hilbert geometry, if P ⊂ Rn is a convex polytope then

volHP (BH
P (q, r)) = cn|Flags(P)|rn + o(rn), r →∞.

Theorem (F-Vernicos-Walsh)

If P ⊂ Rn is a convex polytope, then

volFP(BF
P (q, r)) =

1

ωn(n!)2
|Flags(P)|rn + o(rn), r →∞

The flag number |Flags(P)| of P is a combinatorial analogue of centro-affine surface
area.

Theorem (Schütt ’91)

If P ⊂ Rn is a convex polytope, and Pδ its floating body, then

voln(P)− voln(Pδ) ∼
1

n!nn−1
|Flags(P)|δ

(
log

1

δ

)n−1

, δ → 0+

Dmitry Faifman Funk geometry of polytopes and their flags



Funk and Hilbert geometries Funk-Mahler Funk geometry in polytopes Upper bound Miscellaneous Conclusion

The Funk-Mahler conjecture

Conjecture (FVW)

For any 0 < r <∞, Mr (K , q) := ωn volK (BK (q, r)) is minimized:
- By centered simplices in general.
- By centered Hanner polytopes among centrally-symmetric convex bodies K .

• When r → 0, this becomes Mahler’s conjecture.

• When r →∞ and K = P a polytope, r−nMr (P, q)→ cn|Flags(P)|.

• Among all convex polytopes P, |Flags(P)| is trivially minimized by simplices.

Flag Conjecture (Kalai ’89)

For centrally-symmetric P, |Flags(P)| ≥ 2nn!, equality for Hanner polytopes.

Related:

3d Conjecture (Kalai ’89)

Among centrally-symmetric polytopes, the total face number
|F0(P)|+ · · ·+ |Fn(P)| ≥ 3n. Equality is attained by Hanner polytopes.
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Lower bounds

The Mahler conjecture is known up to dimension 2 in general (Mahler).
The centrally-symmetric Mahler is known in dimension 3 (Iriyeh-Shibata 2020),
for unconditional convex bodies (Saint Raymond ’81), zonoids (Reisner ’86),
some other settings.

Theorem (F-Vernicos-Walsh)

For any 0 < r <∞, Hanner polytopes uniquely minimize volK (BK (r , 0)) among
all unconditional convex bodies K , .

Taking r →∞ we make some progress towards Kalai’s flag conjecture.

Corollary (F-Vernicos-Walsh)

For unconditional polytopes P, |Flags(P)| ≥ 2nn!.

Equality cases are lost in the limit. But we will say something about equality
cases later on.

Theorem (Chambers ’22)

For unconditional polytopes P, |F0(P)|+ · · ·+ |Fn(P)| ≥ 3n.
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The monodromy group of a polytope

Fix a flag f ∈ Flags(P), explicitly

∅ = f−1 = f0 ⊂ · · · ⊂ fn−1 ⊂ fn = P.

For 0 ≤ i ≤ n − 1, there is a unique flag f ′ ∈ Flags(P) such that f ′j = fj or

all j 6= i , and f ′i 6= fi .

The i-flip ri : Flags(P)→ Flags(P) is defined by ri (f ) := f ′. Thus r 2
i = id.

The monodromy group GP is generated by all i-flips r0, . . . , rn−1. It acts on
Flags(P).

Define the complete flip r := rn−1 ◦ rn−2 ◦ · · · ◦ r0 ∈ GP .
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Two terms asymptotics

For a facet F ∈ Fn−1(P), write F̂ ∈ F0(P◦) for the corresponding vertex.

Theorem (F-Vernicos-Walsh)

For a polytope P ⊂ Rn with 0 ∈ int(P) one has

ωn volP
(
BP(R)

)
= c0(P)Rn + c1(P)Rn−1 + o(Rn−1), R →∞

where

c0(P) =
|Flags(P)|

(n!)2
, c1(P) =

n

(n!)2

∑
f∈Flags(P)

log
(

1−
〈

̂(rf )n−1, f0
〉)

.

If an unconditional polytope has |Flags(P)| = |Flags(Hn)|, it must have
c1(P) ≥ c1(Hn) (due to known equality cases for finite radius).

Hanner polytopes maximize c1(P) among polytopes with |Flags(P)| = |Flags(Hn)|.

Corollary

If P is unconditional, and |Flags(P)| = |Flags(Hn)| = 2nn!, then for every
f ∈ Flags(P), −f0 ∈ (rf )n−1.

Does not imply uniqueness of Hanner - any (unconditional) 2-level polytope satisfies
this condition.
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The Santaló point

The Santaló point sK of K ⊂ Rn is the unique point sK = q ∈ int(K) such that |Kq |
is minimized. One has sK = 0 if and only if 0 is the center of mass of K◦.

Theorem (F-Vernicos-Walsh)

• For each 0 < r <∞, there is a unique point q = sr (K) ∈ int(K) that minimizes the
Funk volume of BK (q, r) inside K .
• Similarly,

c1(P, q) = lim
R→∞

R−(n−1)

(
ωn volP

(
BP(q,R)

)
−
|Flags(P)|

(n!)2
Rn

)
has a unique minimum at s∞(P) = limR→∞ sR(P).
• s∞(P) = 0 if and only if ∑

F∈Fn−1(P)

|Flags(F )|F̂ = 0.

Strict convexity of f (q) := volK (BK (q, r)) follows from the strict convexity of
x 7→ |K x |.

Less trivial is showing that f is proper, that is f (q)→∞ as q → ∂K , without
regularity assumptions on K . We use the projective invariance of the Funk volume to
squeeze infinitely many disjoint Hilbert balls of fixed radius into a ball centered at ∂K .
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(n!)2
Rn

)
has a unique minimum at s∞(P) = limR→∞ sR(P).
• s∞(P) = 0 if and only if ∑

F∈Fn−1(P)
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Strict convexity of f (q) := volK (BK (q, r)) follows from the strict convexity of
x 7→ |K x |.

Less trivial is showing that f is proper, that is f (q)→∞ as q → ∂K , without
regularity assumptions on K . We use the projective invariance of the Funk volume to
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Upper bound

Conjecture (Funk-Blaschke-Santaló)

Given 0 < r <∞, minq∈K volK (BK (q, r)) is uniquely maximized by ellipsoids.

Motivation: • For r → 0 it is the Blaschke-Santaló inequality.
• For r →∞, it is the centro-affine isoperimetric inequality of Lutwak:
Ωn(K , c.m.) ≤ Ωn(Bn).

Theorem (Berck-Bernig-Vernicos ’10, Vernicos-Yang ’19)

For a C1,1 convex body K and 0 ∈ int(K), the Hilbert ball BH
K (R, 0) has volume

volHK (BH
K (R, 0)) ∼

1

n − 1
C0(K)e(n−1)R , R →∞.

The centro-projective surface area C0(K) ia uniquely maximized by ellipsoids.

The Colbois-Verovic volume entropy conjecture:.

Theorem (Tholozan Duke ’17, Vernicos-Walsh Ann. Sci. Éc. Norm. Supér ’21)

In Hilbert geometry, lim supr→∞
log volHK (BH

K (q,r))

r
≤ n − 1.

The Funk-Blaschke-Santaló conjecture implies and sharpens Colbois-Verovic.
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The Funk-Blaschke-Santaló conjecture implies and sharpens Colbois-Verovic.
Dmitry Faifman Funk geometry of polytopes and their flags



Funk and Hilbert geometries Funk-Mahler Funk geometry in polytopes Upper bound Miscellaneous Conclusion

Upper bound

Conjecture (Funk-Blaschke-Santaló)
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More upper bound

Theorem (F, jdg ’22+)

Among unconditional convex bodies K , ellipsoids uniquely maximize
volK (BK (r , 0)) for any 0 < r <∞.

Theorem (F-Vernicos-Walsh)

Among m-polygons P ⊂ R2, affine images of the regular m-polygon uniquely
maximize c1(P, s∞(P)).
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Functional inequalities

Functional Funk-Blaschke-Santaló conjecture

For even φ : Rn → R, and 0 < λ < 1 one has
�
Rn×Rn

e−φ(x)−Lφ(ξ)+λ〈x,ξ〉dxdξ ≤ (2π)n

(1− λ2)n/2

with equality only for e−φ gaussian.

Proved in [F, jdg ’22+] for unconditional φ.

Functional Funk-Mahler conjecture

For convex even φ : Rn → R ∪ {∞}, and 0 < λ < 1 one has

�
Rn×Rn

e−φ(x)−Lφ(ξ)+λ〈x,ξ〉dxdξ ≥ 2n

λn

(
log

1 + λ

1− λ

)n

,

equality attained e.g. by φ(x) = |x1|+ · · ·+ |xn|.

Proved (FVW) for unconditional φ using Fradelizi-Meyer (Positivity ’08).
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Wild speculations

Yet another conjecture of Kalai

A centrally-symmetric polytope P satisfies |Flags(P)| ≥ n!2

2n
|P||P◦|.

Aiming for a finite radius version, we may boldly propose

A reverse Bishop-Gromov-type conjecture (FVW)

Let 0 < r < R <∞, and K ⊂ Rn a centrally-symmetric convex body. Then

volK (BK (R))

volK (BK (r))
≥

volHn (BHn (R))

volHn (BHn (r))
.

Kalai’s conjecture follows when r → 0,R →∞.
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Direct Bishop-Gromov is false

Bishop-Gromov theorem

Let 0 < r < R <∞, M complete Riemannian with RicM ≥ (n − 1)K . Let MK

be the model space of that curvature. Then

volM(BM(p,R))

volM(BM(p, r))
≤ volMK (BMK (pM ,R))

volMK (BMK (pM , r))
.

The direct analogue of Bishop-Gromov is provably false:

A Bishop-Gromov-type FALSE conjecture

Let 0 < r < R <∞, K ⊂ Rn a centrally-symmetric convex body, En an
ellipsoid. Then

volK (BK (R))

volK (BK (r))
≤ volEn (BEn (R))

volEn (BEn (r))
.

This is false: Taking R, r → 0, this implies the inequality�
K×K◦

〈x , ξ〉2dxdξ ≤ n

(n + 2)2
|K ||K◦|,

shown to be false by Klartag (’17) even for unconditional convex bodies. The
Reverse conjecture would imply�

K×K◦
〈x , ξ〉2dxdξ ≥

n − 1
3

(n + 1)(n + 2)
|K ||K◦|.

Can you prove or disprove it?
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The End

Thanks for listening!
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