The L_{p}-Minkowski problem - Old and New results

Károly Böröczky
Alfréd Rényi Institute of Mathematics

Cortona, June 30, 2023

Founding Fathers

- MINKOWSKI
- Firey
- Lutwak

Minkowski combination, Brunn-Minkowski inequality

$K, C \subset \mathbb{R}^{n}$ convex bodies, $\alpha, \beta>0 \Longrightarrow h_{\alpha K+\beta C}=\alpha h_{K}+\beta h_{C}$

$$
\begin{aligned}
\alpha K+\beta C & =\{\alpha x+\beta y: x \in K, y \in C\} \\
& =\left\{x \in \mathbb{R}^{n}:\langle u, x\rangle \leq \alpha h_{K}(u)+\beta h_{C}(u) \forall u \in S^{n-1}\right\}
\end{aligned}
$$

Minkowski combination, Brunn-Minkowski inequality

$K, C \subset \mathbb{R}^{n}$ convex bodies, $\alpha, \beta>0 \Longrightarrow h_{\alpha K+\beta C}=\alpha h_{K}+\beta h_{C}$

$$
\begin{aligned}
\alpha K+\beta C & =\{\alpha x+\beta y: x \in K, y \in C\} \\
& =\left\{x \in \mathbb{R}^{n}:\langle u, x\rangle \leq \alpha h_{K}(u)+\beta h_{C}(u) \forall u \in S^{n-1}\right\}
\end{aligned}
$$

Brunn-Minkowski inequality $\alpha, \beta>0$

$$
V(\alpha K+\beta C)^{\frac{1}{n}} \geq \alpha V(K)^{\frac{1}{n}}+\beta V(C)^{\frac{1}{n}}
$$

with equality iff K and C are homothetic ($K=\gamma C+x, \gamma>0$).
Equivalent form $\lambda \in(0,1)$

$$
V((1-\lambda) K+\lambda C) \geq V(K)^{1-\lambda} V(C)^{\lambda}
$$

Surface area measure $=$ First variation of volume

 S_{K} - surface area measure on S^{n-1} of a convex body $K \subset \mathbb{R}^{n}$$$
\lim _{\varrho \rightarrow 0^{+}} \frac{V(K+\varrho C)-V(K)}{\varrho}=\int_{S^{n-1}} h_{C} d S_{K}
$$

for any convex body $C \subset \mathbb{R}^{n}$ (e.g. $\left.V(K)=\frac{1}{n} \int_{S^{n-1}} h_{K} d S_{K}\right)$

Surface area measure $=$ First variation of volume

S_{K} - surface area measure on S^{n-1} of a convex body $K \subset \mathbb{R}^{n}$

$$
\lim _{\varrho \rightarrow 0^{+}} \frac{V(K+\varrho C)-V(K)}{\varrho}=\int_{S^{n-1}} h_{C} d S_{K}
$$

for any convex body $C \subset \mathbb{R}^{n}$ (e.g. $V(K)=\frac{1}{n} \int_{S^{n-1}} h_{K} d S_{K}$)
Minkowski inequality (equivalent to Brunn-Minkowski)
$K, C \subset \mathbb{R}^{n}$ convex body with $V(K)=V(C) \Longrightarrow$

$$
\int_{S^{n-1}} h_{C} d S_{K} \geq \int_{S^{n-1}} h_{K} d S_{K} \quad(=n V(K))
$$

with equality $\Longleftrightarrow C=K+x$

- ∂K is $C_{+}^{2}, f_{K}\left(\nu_{K}(x)\right)=\kappa_{\partial K}(x)^{-1}$ for $x \in \partial K \Longrightarrow$

$$
d S_{K}=f_{K} d \mathcal{H}^{n-1}
$$

$-K$ polytope, F_{1}, \ldots, F_{k} facets, u_{i} exterior unit normal at F_{i}

$$
S_{K}\left(\left\{u_{i}\right\}\right)=\mathcal{H}^{n-1}\left(F_{i}\right)
$$

Minkowski problem

μ Borel measure on S^{n-1}
$\exists K \subset \mathbb{R}^{n}$ convex body with $\mu=S_{K} \Longleftrightarrow$

- $\mu\left(L \cap S^{n-1}\right)<\mu\left(S^{n-1}\right)$ for any linear $(n-1)$-subspace $L \subset \mathbb{R}^{n}$
$-\int_{S^{n-1}} u d \mu(u)=0$

Minkowski problem

μ Borel measure on S^{n-1}
$\exists K \subset \mathbb{R}^{n}$ convex body with $\mu=S_{K} \Longleftrightarrow$

- $\mu\left(L \cap S^{n-1}\right)<\mu\left(S^{n-1}\right)$ for any linear $(n-1)$-subspace $L \subset \mathbb{R}^{n}$
- $\int_{S^{n-1}} u d \mu(u)=0$

Monge-Ampere equation on S^{n-1} :

$$
\operatorname{det}\left(\nabla^{2} h+h I_{n-1}\right)=f
$$

Regularity Nirenberg, Pogorelov: $f>0 C^{k}, k \geq 2 \Longrightarrow h$ is C^{k+2} Caffarelli: $f>0 C^{\alpha}$ for $\alpha \in(0,1) \Longrightarrow h$ is $C^{2, \alpha}$

To solve the Minkowski problem ,

- Minimize $\int_{S^{n-1}} h_{C} d \mu$ under the condition $V(C)=1$
- Uniqueness up to translation comes from uniqueness in the Minkowski inequality

Logarithmic Minkowski problem - Cone volume measure

$d V_{K}=\frac{1}{n} h_{K} d S_{K}$ - cone volume measure on S^{n-1} if $o \in K$
(Firey, 1974) - L_{0} surface area measure
$-K$ polytope, F_{1}, \ldots, F_{k} facets, u_{i} exterior unit normal at F_{i}

$$
V_{K}\left(\left\{u_{i}\right\}\right)=\frac{h_{K}\left(u_{i}\right) \mathcal{H}^{n-1}\left(F_{i}\right)}{n}=V\left(\operatorname{conv}\left\{o, F_{i}\right\}\right)
$$

- $V_{K}\left(S^{n-1}\right)=V(K)$.

Monge-Ampere type differential equation on S^{n-1} for $h=h_{K}$ if μ has a density function f (Firey, 1974):

$$
h \operatorname{det}\left(\nabla^{2} h+h I_{n-1}\right)=f
$$

Naor, Werner, Paouris, Stancu. . . used it for example for L_{p} balls

Firey's Gauss curvature flow

Firey's worn stone (1974), $\alpha>0$

$$
\frac{\partial}{\partial t} X(x, t)=-\kappa(x, t)^{\alpha} \nu(x, t)
$$

Actually, Firey's original problem when $\alpha=1$
Andrews, Guan, Ni (2016) $\alpha>\frac{1}{n+1} \Longrightarrow$ Normalized flow converges to a self similar soliton satisfying

$$
h^{\frac{1}{\alpha}} \operatorname{det}\left(\nabla^{2} h+h I_{n-1}\right)=\text { constant }
$$

Brendle, Choi, Daskalopoulos (2017) Unique solution is the ball
$\alpha=\frac{1}{n+1} \Longrightarrow$ centered ellipsoids solutions (Calabi, Andrews)
$h^{n+1} \operatorname{det}\left(\nabla^{2} h+h I_{n-1}\right)=$ centro-affine curvature function invariant under SL(n)

Lutwak's L_{p} surface area measures

L_{p} surface area measures (Lutwak 1990) $p \in \mathbb{R}$

$$
d S_{K, p}=h_{K}^{1-p} d S_{K}=n h_{K}^{-p} d V_{K}
$$

Examples

- $S_{K, 1}=S_{K}$
- $S_{K, 0}=n V_{K}$
- $S_{K,-n}$ related to the $\operatorname{SL}(n)$ invariant curvature $\frac{\kappa_{K}(u)}{h_{K}(u)^{n+1}}$

Lutwak's L_{p} surface area measures

L_{p} surface area measures (Lutwak 1990) $p \in \mathbb{R}$

$$
d S_{K, p}=h_{K}^{1-p} d S_{K}=n h_{K}^{-p} d V_{K}
$$

Examples

- $S_{K, 1}=S_{K}$
- $S_{K, 0}=n V_{K}$
- $S_{K,-n}$ related to the $\operatorname{SL}(n)$ invariant curvature $\frac{\kappa_{K}(u)}{h_{K}(u)^{n+1}}$

Remark Possibly $o \in \partial K$ where $d S_{K, p}=f d \mathcal{H}^{n-1}$ and $f>0$ and f is C^{α} if $-n+2<p<n$

Variational approach

- Minimize " $\int_{S^{n-1}} h_{C}^{p} d \mu$ " under the condition $V(C)=1$
- Weak approximation by "nice" measures

Lutwak's L_{p} Minkowski problem ~ 1990

L_{p} Minkowski problem $h_{K}^{1-p} d S_{K}=d \mu, o \in K$
Monge-Ampere on S^{n-1} for $h=h_{K}$ if μ has a density function f :

$$
h^{1-p} \operatorname{det}\left(\nabla^{2} h+h I_{n-1}\right)=f
$$

- $p=1 \Longrightarrow$ Minkowski problem
- $p=0 \Longrightarrow$ Logarithmic Minkowski problem
- $p=-n \Longrightarrow$ Determining Centro-affine curvature State of art
- $p>1, p \neq n$: Guan\&Li, Chou\&Wang, Hug\&LYZ
- $0<p<1$: Chen\&Li\&Zhu "almost complete"
- $p=0$: positive results by Chen\&Li\&Zhu
- $-n<p<0: f \in L_{\frac{n}{n+p}}\left(S^{n-1}\right)$ (Bianchi\&B\&Colesanti)
- $p<-n: f>0 C^{3}$ by Guang, Li, Wang

When the support is lower dimensional

$K \subset \mathbb{R}^{n}$ convex body, $o \in K$
$L \subset \mathbb{R}^{n}$ linear subspace, $2 \leq d+1=\operatorname{dim} L \leq n-1$

- $p<\left.1 \Longrightarrow S_{p, K}\right|_{L} \neq \mathcal{H}^{d}$ (Saroglou)
- $0<p<1$, lin $\operatorname{supp} \mu=L \cap S^{n-1}$ and $\exists v \in L \cap S^{n-1}$ s.t.
$\langle u, v\rangle \leq 0$ for $u \in \operatorname{supp} \mu \Longrightarrow \mu=S_{p, K}$ (Bianchi, Colesanti, B., Yang)

Open problem Characterize $S_{p, K}$ if $p \in(0,1) \& \operatorname{supp} \mu \subset L \cap S^{n-1}$

When f is almost constant

$$
h^{1-p} \operatorname{det}\left(\nabla^{2} h+h I_{n-1}\right)=f,-n<p<1
$$

- Uniqueness holds if $f=$ constant (Brendle\&Choi\&Daskalopoulos (2017), Saroglou (2022) with Steiner symmetrization, Milman\&lvaki (2023) elegant argument)
- Stability (Ivaki, 2022): f is close to be a constant + extra conditions \Longrightarrow solution close to be a ball
- Uniqueness near constants (B., Saroglou 2023+) f is $C^{0, a}$ close to be a constant and $p \in[0,1) \Longrightarrow$ solution is unique ($p=0$ and $n=3$ due to Chen\&Feng\&Liu)

When f is almost constant

$$
h^{1-p} \operatorname{det}\left(\nabla^{2} h+h I_{n-1}\right)=f,-n<p<1
$$

- Uniqueness holds if $f=$ constant (Brendle\&Choi\&Daskalopoulos (2017), Saroglou (2022) with Steiner symmetrization, Milman\&lvaki (2023) elegant argument)
- Stability (Ivaki, 2022): f is close to be a constant + extra conditions \Longrightarrow solution close to be a ball
- Uniqueness near constants (B., Saroglou 2023+) f is $C^{0, a}$ close to be a constant and $p \in[0,1) \Longrightarrow$ solution is unique ($p=0$ and $n=3$ due to Chen\&Feng\&Liu)
Open problem $\lambda^{-1} \leq h^{1-p} \operatorname{det}\left(\nabla^{2} h+h I_{n-1}\right) \leq \lambda$ and $p \in[0,1)$
$\Longrightarrow ? ~ h \leq C(\lambda, n, p)$
Known $p \in[0,1)$ and $n=3$ (Chen\&Feng\&Liu and B\&Saroglou) $p=0$ and $n=4$ (B\&Saroglou)

Uniqueness in the L_{p}-Minkowski problem

L_{p}-Minkowski problem on S^{n-1}

$$
h^{1-p} \operatorname{det}\left(\nabla^{2} h+h I_{n-1}\right)=f \geq 0
$$

- Uniqueness holds if $p>1$ (Chou\&Wang, Hug\&Lutwak\&Yang\&Zhang)
- No uniqueness in general if $p<1$ (Chen\&Li\&Zhu)

Even L_{p}-Minkowski problem on S^{n-1}

- Uniqueness Conjectured if $0<p<1$
- Uniqueness Conjectured if $p=0$ and $f>0$ is C^{∞}
- No uniqueness if $p<0$ (Li\&Liu\&Lu, E. Milman)
- Uniqueness if $p_{n}<p<1$ and $f>0$ is C^{∞} where $p_{n}=1-\frac{c}{n \log n} \in(0,1)$
(Chen\&Huang\&Li\&Liu, Kolesnikov\&Milman, Putterman)

Even cone volume measures

Theorem (B, Lutwak, Yang, Zhang, 2013)
Let μ be an even Borel measure on S^{n-1}. $\mu=V_{K}$ for some o-symmetric convex body K iff
(i) $\mu\left(L \cap S^{n-1}\right) \leq \frac{\operatorname{dim} L}{n} \mu\left(S^{n-1}\right)$ for any $L \neq\{o\}, \mathbb{R}^{n}$
(ii) If equality holds for some L, then $\operatorname{supp} \mu \subset L \cup L^{\prime}$ for some complementary L^{\prime}
Idea $\mu=\alpha V_{\widetilde{C}}$ if \widetilde{C} minimizes $\int_{S^{n-1}} \log h_{C} d \mu$ assuming $V(C)=1$

Even cone volume measures

Theorem (B, Lutwak, Yang, Zhang, 2013)
Let μ be an even Borel measure on S^{n-1}.
$\mu=V_{K}$ for some o-symmetric convex body K iff
(i) $\mu\left(L \cap S^{n-1}\right) \leq \frac{\operatorname{dim} L}{n} \mu\left(S^{n-1}\right)$ for any $L \neq\{o\}, \mathbb{R}^{n}$
(ii) If equality holds for some L, then $\operatorname{supp} \mu \subset L \cup L^{\prime}$ for some complementary L^{\prime}

Idea $\mu=\alpha V_{\widetilde{C}}$ if \widetilde{C} minimizes $\int_{S^{n-1}} \log h_{C} d \mu$ assuming $V(C)=1$
Conjecture (Uniqueness)
$V_{K}=V_{C}$ for o-symmetric convex bodies K and C with
$V(K)=V(C)$ iff K and C have dilated direct summands; namely, $K=K_{1} \oplus \ldots \oplus K_{m}$ and $C=C_{1} \oplus \ldots \oplus C_{m}$ with $K_{i}=\lambda_{i} C_{i}$ for $\lambda_{1}, \ldots, \lambda_{m}>0$.

Coinciding cone volumes

Logarithmic $\left(L_{0}\right)$ Minkowski conjecture

Conjecture (B, Lutwak, Yang, Zhang)
$K, C \subset \mathbb{R}^{n}$ o-symmetric convex bodies, $V(K)=V(C) \Longrightarrow$

$$
\begin{equation*}
\int_{S^{n-1}} \log h_{C} d V_{K} \geq \int_{S^{n-1}} \log h_{K} d V_{K} \tag{1}
\end{equation*}
$$

Assuming K is smooth, equality holds $\Longleftrightarrow K=C$.
Remark For even C_{+}^{∞} data, uniqueness of the solution of the Log-Minkowski problem \Longleftrightarrow equality holds in (1) only if $K=C$. Known results

- $n=2$
- K is close to some ellipsoid (Colesanti\&Livshyts\&Marsiglietti, Kolesnikov\&Milman, Chen\&Huang\&Li\&Liu)
- K, C have complex symmetry (Rotem)
- K, C - hyperplane symmetry (Saroglou, B\&Kalantzopoulos)
- K zonoid (van Handel)

L_{p} Minkowski inequality/conjecture

L_{p} Minkowski inequality/conjecture inequality if $p \geq 1$ by Minkowski, Firey (1962) conjecture if $0<p<1$ and K, C o-symmetric

$$
\int_{S^{n-1}}\left(\frac{h_{C}}{h_{K}}\right)^{p} d V_{K} \geq V(K)\left(\frac{V(C)}{V(K)}\right)^{\frac{p}{n}}
$$

with equality if $p \neq 1 \Longleftrightarrow K$ and C are dilates.

- Proved if $p_{n} \leq p<1$ where $p_{n}=1-\frac{c}{n \log n}$ (Chen\&Huang\&Li\&Liu, Kolesnikov\&Milman, Putterman)
- if inequality holds for some $p \geq 0$, then holds for $q>p$
- if $0<p<1$, inequality for o-symmetric convex bodies equivalent to unique even solution of L_{p}-Minkowski problem (enough to consider C_{+}^{∞} case)

Logarithmic (L_{0}) Brunn-Minkowski conjecture

$\lambda \in[0,1], o \in K, C$
$(1-\lambda) K+{ }_{0} \lambda C=\left\{x \in \mathbb{R}^{n}:\langle u, x\rangle \leq h_{K}(u)^{1-\lambda} h_{C}(u)^{\lambda} \forall u \in S^{n-1}\right\}$
$\lambda K+0(1-\lambda) C \subset \lambda K+(1-\lambda) C$
Conjecture (Logarithmic Brunn-Minkowski conjecture)
$\lambda \in(0,1), K, C$ o-symmetric

$$
V\left((1-\lambda) K++_{0} \lambda C\right) \geq V(K)^{1-\lambda} V(C)^{\lambda}
$$

with equality iff K and C have dilated direct summands.
$4^{-n}|K|^{1-\lambda}|C|^{\lambda} \leq\left|(1-\lambda) K+{ }_{0} \lambda C\right| \leq n^{2 n}|K|^{1-\lambda}|C|^{\lambda}$
Known results

- $n=2$
- K, C are close to a fixed ellipsoid (Kolesnikov\&Milman, Colesanti\&Livshyts\&Marsiglietti, Chen\&Huang\&Li\&Liu)
- K, C have complex symmetry (Rotem)
- K, C - hyperplane symmetry (Saroglou, B\&Kalantzopoulos)

Lp sum of coordinate boxes

L_{p} Brunn-Minkowski inequality/conjecture

$p>0, \lambda \in(0,1), o \in \operatorname{int} K, \operatorname{int} L$
$\lambda K+_{p}(1-\lambda) L=\left\{x \in \mathbb{R}^{n}:\langle u, x\rangle^{p} \leq \lambda h_{K}(u)^{p}+(1-\lambda) h_{L}(u)^{p} \forall u\right\}$
$p \geq 1 \quad h_{\lambda K+p(1-\lambda) L}=\left(\lambda h_{K}^{p}+(1-\lambda) h_{L}^{p}\right)^{1 / p}$
$L_{p} \mathrm{BM}$ inequality $(p \geq 1) /$ conjecture $(0<p<1, o$-symm $)$

$$
V\left((1-\lambda) K+_{p} \lambda L\right)^{\frac{p}{n}} \geq(1-\lambda) V(K)^{\frac{p}{n}}+\lambda V(L)^{\frac{p}{n}}
$$

with equality iff K and L are dilated. Equivalent

$$
V\left(\lambda K+_{p}(1-\lambda) L\right) \geq V(K)^{\lambda} V(L)^{1-\lambda}
$$

Known if $p>1$ (Firey, 1962), $p=1$ (Minkowski),
$p_{n}<p<1$ where $p_{n}=1-\frac{c}{n \log n} \in(0,1)$ (Chen\&Huang\&Li\&Liu, Kolesnikov\&Milman, Putterman)

